기본 콘텐츠로 건너뛰기
x, y에 대한 해
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

x-y=-4
첫 번째 수식을 검토합니다. 수식의 양쪽 모두에 4을(를) 곱합니다.
x-y=-4,x+4y=-9
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
x-y=-4
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
x=y-4
수식의 양쪽에 y을(를) 더합니다.
y-4+4y=-9
다른 수식 x+4y=-9에서 y-4을(를) x(으)로 치환합니다.
5y-4=-9
y을(를) 4y에 추가합니다.
5y=-5
수식의 양쪽에 4을(를) 더합니다.
y=-1
양쪽을 5(으)로 나눕니다.
x=-1-4
x=y-4에서 y을(를) -1(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=-5
-4을(를) -1에 추가합니다.
x=-5,y=-1
시스템이 이제 해결되었습니다.
x-y=-4
첫 번째 수식을 검토합니다. 수식의 양쪽 모두에 4을(를) 곱합니다.
x-y=-4,x+4y=-9
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}1&-1\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-9\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}1&-1\\1&4\end{matrix}\right))\left(\begin{matrix}1&-1\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&4\end{matrix}\right))\left(\begin{matrix}-4\\-9\end{matrix}\right)
\left(\begin{matrix}1&-1\\1&4\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&4\end{matrix}\right))\left(\begin{matrix}-4\\-9\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&4\end{matrix}\right))\left(\begin{matrix}-4\\-9\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-1\right)}&-\frac{-1}{4-\left(-1\right)}\\-\frac{1}{4-\left(-1\right)}&\frac{1}{4-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-4\\-9\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}&\frac{1}{5}\\-\frac{1}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-4\\-9\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}\left(-4\right)+\frac{1}{5}\left(-9\right)\\-\frac{1}{5}\left(-4\right)+\frac{1}{5}\left(-9\right)\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\-1\end{matrix}\right)
산술 연산을 수행합니다.
x=-5,y=-1
행렬 요소 x 및 y을(를) 추출합니다.
x-y=-4
첫 번째 수식을 검토합니다. 수식의 양쪽 모두에 4을(를) 곱합니다.
x-y=-4,x+4y=-9
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
x-x-y-4y=-4+9
등호 부호 양쪽에서 동류항을 빼서 x-y=-4에서 x+4y=-9을(를) 뺍니다.
-y-4y=-4+9
x을(를) -x에 추가합니다. x 및 -x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
-5y=-4+9
-y을(를) -4y에 추가합니다.
-5y=5
-4을(를) 9에 추가합니다.
y=-1
양쪽을 -5(으)로 나눕니다.
x+4\left(-1\right)=-9
x+4y=-9에서 y을(를) -1(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x-4=-9
4에 -1을(를) 곱합니다.
x=-5
수식의 양쪽에 4을(를) 더합니다.
x=-5,y=-1
시스템이 이제 해결되었습니다.