\left. \begin{array} { l } { a = {(-\frac{1}{10} - \frac{1}{5} i)} }\\ { j = {(-2 + 4 i)} a }\\ { k = {(28 - 96 i)} }\\ { l = j }\\ { m = k }\\ { n = l }\\ { o = m }\\ { p = n }\\ { q = o }\\ { r = p }\\ { s = q }\\ { t = r }\\ { u = s }\\ { \text{Solve for } v,w \text{ where} } \\ { v = t }\\ { w = u } \end{array} \right.
a, j, k, l, m, n, o, p, q, r, s, t, u, v, w에 대한 해
v=1
w=28-96i
공유
클립보드에 복사됨
j=\left(-2+4i\right)\left(-\frac{1}{10}-\frac{1}{5}i\right)
두 번째 수식을 검토합니다. 변수의 알려진 값을 수식에 삽입합니다.
j=1
-2+4i과(와) -\frac{1}{10}-\frac{1}{5}i을(를) 곱하여 1(을)를 구합니다.
l=1
네 번째 수식을 검토합니다. 변수의 알려진 값을 수식에 삽입합니다.
n=1
수식(6)을 검토합니다. 변수의 알려진 값을 수식에 삽입합니다.
p=1
수식(8)을 검토합니다. 변수의 알려진 값을 수식에 삽입합니다.
r=1
수식(10)을 검토합니다. 변수의 알려진 값을 수식에 삽입합니다.
t=1
수식(12)을 검토합니다. 변수의 알려진 값을 수식에 삽입합니다.
v=1
수식(14)을 검토합니다. 변수의 알려진 값을 수식에 삽입합니다.
a=-\frac{1}{10}-\frac{1}{5}i j=1 k=28-96i l=1 m=28-96i n=1 o=28-96i p=1 q=28-96i r=1 s=28-96i t=1 u=28-96i v=1 w=28-96i
시스템이 이제 해결되었습니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}