x, y에 대한 해
x=10
y=5
그래프
공유
클립보드에 복사됨
2.7x+3.1y=42.5,x+y=15
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
2.7x+3.1y=42.5
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
2.7x=-3.1y+42.5
수식의 양쪽에서 \frac{31y}{10}을(를) 뺍니다.
x=\frac{10}{27}\left(-3.1y+42.5\right)
수식의 양쪽을 2.7(으)로 나눕니다. 이는 양쪽에 분수의 역수를 곱하는 것과 같습니다.
x=-\frac{31}{27}y+\frac{425}{27}
\frac{10}{27}에 -\frac{31y}{10}+42.5을(를) 곱합니다.
-\frac{31}{27}y+\frac{425}{27}+y=15
다른 수식 x+y=15에서 \frac{-31y+425}{27}을(를) x(으)로 치환합니다.
-\frac{4}{27}y+\frac{425}{27}=15
-\frac{31y}{27}을(를) y에 추가합니다.
-\frac{4}{27}y=-\frac{20}{27}
수식의 양쪽에서 \frac{425}{27}을(를) 뺍니다.
y=5
수식의 양쪽을 -\frac{4}{27}(으)로 나눕니다. 이는 양쪽에 분수의 역수를 곱하는 것과 같습니다.
x=-\frac{31}{27}\times 5+\frac{425}{27}
x=-\frac{31}{27}y+\frac{425}{27}에서 y을(를) 5(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=\frac{-155+425}{27}
-\frac{31}{27}에 5을(를) 곱합니다.
x=10
공통분모를 찾고 분자를 더하여 \frac{425}{27}을(를) -\frac{155}{27}에 더합니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
x=10,y=5
시스템이 이제 해결되었습니다.
2.7x+3.1y=42.5,x+y=15
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}2.7&3.1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}42.5\\15\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}2.7&3.1\\1&1\end{matrix}\right))\left(\begin{matrix}2.7&3.1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2.7&3.1\\1&1\end{matrix}\right))\left(\begin{matrix}42.5\\15\end{matrix}\right)
\left(\begin{matrix}2.7&3.1\\1&1\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2.7&3.1\\1&1\end{matrix}\right))\left(\begin{matrix}42.5\\15\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2.7&3.1\\1&1\end{matrix}\right))\left(\begin{matrix}42.5\\15\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2.7-3.1}&-\frac{3.1}{2.7-3.1}\\-\frac{1}{2.7-3.1}&\frac{2.7}{2.7-3.1}\end{matrix}\right)\left(\begin{matrix}42.5\\15\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2.5&7.75\\2.5&-6.75\end{matrix}\right)\left(\begin{matrix}42.5\\15\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2.5\times 42.5+7.75\times 15\\2.5\times 42.5-6.75\times 15\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\5\end{matrix}\right)
산술 연산을 수행합니다.
x=10,y=5
행렬 요소 x 및 y을(를) 추출합니다.
2.7x+3.1y=42.5,x+y=15
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
2.7x+3.1y=42.5,2.7x+2.7y=2.7\times 15
\frac{27x}{10} 및 x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 1을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 2.7을(를) 곱합니다.
2.7x+3.1y=42.5,2.7x+2.7y=40.5
단순화합니다.
2.7x-2.7x+3.1y-2.7y=\frac{85-81}{2}
등호 부호 양쪽에서 동류항을 빼서 2.7x+3.1y=42.5에서 2.7x+2.7y=40.5을(를) 뺍니다.
3.1y-2.7y=\frac{85-81}{2}
\frac{27x}{10}을(를) -\frac{27x}{10}에 추가합니다. \frac{27x}{10} 및 -\frac{27x}{10}이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
0.4y=\frac{85-81}{2}
\frac{31y}{10}을(를) -\frac{27y}{10}에 추가합니다.
0.4y=2
공통분모를 찾고 분자를 더하여 42.5을(를) -40.5에 더합니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
y=5
수식의 양쪽을 0.4(으)로 나눕니다. 이는 양쪽에 분수의 역수를 곱하는 것과 같습니다.
x+5=15
x+y=15에서 y을(를) 5(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=10
수식의 양쪽에서 5을(를) 뺍니다.
x=10,y=5
시스템이 이제 해결되었습니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}