기본 콘텐츠로 건너뛰기
x, y에 대한 해
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

2x+2y=4,-2x+3y=-9
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
2x+2y=4
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
2x=-2y+4
수식의 양쪽에서 2y을(를) 뺍니다.
x=\frac{1}{2}\left(-2y+4\right)
양쪽을 2(으)로 나눕니다.
x=-y+2
\frac{1}{2}에 -2y+4을(를) 곱합니다.
-2\left(-y+2\right)+3y=-9
다른 수식 -2x+3y=-9에서 -y+2을(를) x(으)로 치환합니다.
2y-4+3y=-9
-2에 -y+2을(를) 곱합니다.
5y-4=-9
2y을(를) 3y에 추가합니다.
5y=-5
수식의 양쪽에 4을(를) 더합니다.
y=-1
양쪽을 5(으)로 나눕니다.
x=-\left(-1\right)+2
x=-y+2에서 y을(를) -1(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=1+2
-1에 -1을(를) 곱합니다.
x=3
2을(를) 1에 추가합니다.
x=3,y=-1
시스템이 이제 해결되었습니다.
2x+2y=4,-2x+3y=-9
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}2&2\\-2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-9\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}2&2\\-2&3\end{matrix}\right))\left(\begin{matrix}2&2\\-2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-2&3\end{matrix}\right))\left(\begin{matrix}4\\-9\end{matrix}\right)
\left(\begin{matrix}2&2\\-2&3\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-2&3\end{matrix}\right))\left(\begin{matrix}4\\-9\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-2&3\end{matrix}\right))\left(\begin{matrix}4\\-9\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-2\left(-2\right)}&-\frac{2}{2\times 3-2\left(-2\right)}\\-\frac{-2}{2\times 3-2\left(-2\right)}&\frac{2}{2\times 3-2\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}4\\-9\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&-\frac{1}{5}\\\frac{1}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}4\\-9\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}\times 4-\frac{1}{5}\left(-9\right)\\\frac{1}{5}\times 4+\frac{1}{5}\left(-9\right)\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
산술 연산을 수행합니다.
x=3,y=-1
행렬 요소 x 및 y을(를) 추출합니다.
2x+2y=4,-2x+3y=-9
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
-2\times 2x-2\times 2y=-2\times 4,2\left(-2\right)x+2\times 3y=2\left(-9\right)
2x 및 -2x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 -2을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 2을(를) 곱합니다.
-4x-4y=-8,-4x+6y=-18
단순화합니다.
-4x+4x-4y-6y=-8+18
등호 부호 양쪽에서 동류항을 빼서 -4x-4y=-8에서 -4x+6y=-18을(를) 뺍니다.
-4y-6y=-8+18
-4x을(를) 4x에 추가합니다. -4x 및 4x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
-10y=-8+18
-4y을(를) -6y에 추가합니다.
-10y=10
-8을(를) 18에 추가합니다.
y=-1
양쪽을 -10(으)로 나눕니다.
-2x+3\left(-1\right)=-9
-2x+3y=-9에서 y을(를) -1(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
-2x-3=-9
3에 -1을(를) 곱합니다.
-2x=-6
수식의 양쪽에 3을(를) 더합니다.
x=3
양쪽을 -2(으)로 나눕니다.
x=3,y=-1
시스템이 이제 해결되었습니다.