기본 콘텐츠로 건너뛰기
계산
Tick mark Image

비슷한 문제의 웹 검색 결과

공유

det(\left(\begin{matrix}i&j&k\\1&-2&2\\3&2&0\end{matrix}\right))
대각선법을 사용하여 행렬의 행렬식을 찾습니다.
\left(\begin{matrix}i&j&k&i&j\\1&-2&2&1&-2\\3&2&0&3&2\end{matrix}\right)
처음 두 열을 네 번째 및 다섯 번째 열로 반복하여 원래 행렬을 전개합니다.
j\times 2\times 3+k\times 2=6j+2k
왼쪽 위의 항목부터 시작하여 대각선을 따라 아래로 곱하고, 결과로 나오는 곱을 더합니다.
3\left(-2\right)k+2\times \left(2i\right)=4i-6k
왼쪽 아래 항목부터 시작하여 대각선을 따라 위로 곱하고 결과로 나온 곱을 더합니다.
6j+2k-\left(4i-6k\right)
하향 대각선 곱의 합에서 상향 대각선 곱의 합을 뺍니다.
6j+8k-4i
6j+2k에서 -6k+4i을(를) 뺍니다.
det(\left(\begin{matrix}i&j&k\\1&-2&2\\3&2&0\end{matrix}\right))
소에 의한 전개법(여인수에 의한 전개라고도 함)을 사용하여 행렬의 행렬식을 찾습니다.
idet(\left(\begin{matrix}-2&2\\2&0\end{matrix}\right))-jdet(\left(\begin{matrix}1&2\\3&0\end{matrix}\right))+kdet(\left(\begin{matrix}1&-2\\3&2\end{matrix}\right))
소로 확장하려면 첫 번째 행의 각 요소를 해당 소로 곱합니다. 해당 소는 해당 요소가 포함된 행과 열을 삭제한 다음 요소의 위치 부호로 곱하여 만들어진 2\times 2 행렬의 행렬식입니다.
i\left(-2\times 2\right)-j\left(-3\times 2\right)+k\left(2-3\left(-2\right)\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 결정자는 ad-bc입니다.
-4i-j\left(-6\right)+k\times 8
단순화합니다.
6j+8k-4i
최종 결과를 찾기 위한 항을 추가합니다.