기본 콘텐츠로 건너뛰기
x, y에 대한 해
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

x-y=10,2x+2y+\frac{1}{2}=200
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
x-y=10
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
x=y+10
수식의 양쪽에 y을(를) 더합니다.
2\left(y+10\right)+2y+\frac{1}{2}=200
다른 수식 2x+2y+\frac{1}{2}=200에서 y+10을(를) x(으)로 치환합니다.
2y+20+2y+\frac{1}{2}=200
2에 y+10을(를) 곱합니다.
4y+20+\frac{1}{2}=200
2y을(를) 2y에 추가합니다.
4y+\frac{41}{2}=200
20을(를) \frac{1}{2}에 추가합니다.
4y=\frac{359}{2}
수식의 양쪽에서 \frac{41}{2}을(를) 뺍니다.
y=\frac{359}{8}
양쪽을 4(으)로 나눕니다.
x=\frac{359}{8}+10
x=y+10에서 y을(를) \frac{359}{8}(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=\frac{439}{8}
10을(를) \frac{359}{8}에 추가합니다.
x=\frac{439}{8},y=\frac{359}{8}
시스템이 이제 해결되었습니다.
x-y=10,2x+2y+\frac{1}{2}=200
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}1&-1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\\frac{399}{2}\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}1&-1\\2&2\end{matrix}\right))\left(\begin{matrix}1&-1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&2\end{matrix}\right))\left(\begin{matrix}10\\\frac{399}{2}\end{matrix}\right)
\left(\begin{matrix}1&-1\\2&2\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&2\end{matrix}\right))\left(\begin{matrix}10\\\frac{399}{2}\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&2\end{matrix}\right))\left(\begin{matrix}10\\\frac{399}{2}\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-2\right)}&-\frac{-1}{2-\left(-2\right)}\\-\frac{2}{2-\left(-2\right)}&\frac{1}{2-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}10\\\frac{399}{2}\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{4}\\-\frac{1}{2}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}10\\\frac{399}{2}\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 10+\frac{1}{4}\times \frac{399}{2}\\-\frac{1}{2}\times 10+\frac{1}{4}\times \frac{399}{2}\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{439}{8}\\\frac{359}{8}\end{matrix}\right)
산술 연산을 수행합니다.
x=\frac{439}{8},y=\frac{359}{8}
행렬 요소 x 및 y을(를) 추출합니다.
x-y=10,2x+2y+\frac{1}{2}=200
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
2x+2\left(-1\right)y=2\times 10,2x+2y+\frac{1}{2}=200
x 및 2x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 2을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 1을(를) 곱합니다.
2x-2y=20,2x+2y+\frac{1}{2}=200
단순화합니다.
2x-2x-2y-2y-\frac{1}{2}=20-200
등호 부호 양쪽에서 동류항을 빼서 2x-2y=20에서 2x+2y+\frac{1}{2}=200을(를) 뺍니다.
-2y-2y-\frac{1}{2}=20-200
2x을(를) -2x에 추가합니다. 2x 및 -2x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
-4y-\frac{1}{2}=20-200
-2y을(를) -2y에 추가합니다.
-4y-\frac{1}{2}=-180
20을(를) -200에 추가합니다.
-4y=-\frac{359}{2}
수식의 양쪽에 \frac{1}{2}을(를) 더합니다.
y=\frac{359}{8}
양쪽을 -4(으)로 나눕니다.
2x+2\times \frac{359}{8}+\frac{1}{2}=200
2x+2y+\frac{1}{2}=200에서 y을(를) \frac{359}{8}(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
2x+\frac{359}{4}+\frac{1}{2}=200
2에 \frac{359}{8}을(를) 곱합니다.
2x+\frac{361}{4}=200
공통분모를 찾고 분자를 더하여 \frac{359}{4}을(를) \frac{1}{2}에 더합니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
2x=\frac{439}{4}
수식의 양쪽에서 \frac{361}{4}을(를) 뺍니다.
x=\frac{439}{8}
양쪽을 2(으)로 나눕니다.
x=\frac{439}{8},y=\frac{359}{8}
시스템이 이제 해결되었습니다.