\left\{ \begin{array} { l } { x - 1 = y } \\ { 2 x - y + 4 = 0 } \end{array} \right.
x, y에 대한 해
x=-5
y=-6
그래프
공유
클립보드에 복사됨
x-1-y=0
첫 번째 수식을 검토합니다. 양쪽 모두에서 y을(를) 뺍니다.
x-y=1
양쪽에 1을(를) 더합니다. 모든 항목에 0을 더한 결과는 해당 항목 자체입니다.
2x-y=-4
두 번째 수식을 검토합니다. 양쪽 모두에서 4을(를) 뺍니다. 0에서 모든 항목을 뺀 결과는 해당 항목의 음수입니다.
x-y=1,2x-y=-4
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
x-y=1
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
x=y+1
수식의 양쪽에 y을(를) 더합니다.
2\left(y+1\right)-y=-4
다른 수식 2x-y=-4에서 y+1을(를) x(으)로 치환합니다.
2y+2-y=-4
2에 y+1을(를) 곱합니다.
y+2=-4
2y을(를) -y에 추가합니다.
y=-6
수식의 양쪽에서 2을(를) 뺍니다.
x=-6+1
x=y+1에서 y을(를) -6(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=-5
1을(를) -6에 추가합니다.
x=-5,y=-6
시스템이 이제 해결되었습니다.
x-1-y=0
첫 번째 수식을 검토합니다. 양쪽 모두에서 y을(를) 뺍니다.
x-y=1
양쪽에 1을(를) 더합니다. 모든 항목에 0을 더한 결과는 해당 항목 자체입니다.
2x-y=-4
두 번째 수식을 검토합니다. 양쪽 모두에서 4을(를) 뺍니다. 0에서 모든 항목을 뺀 결과는 해당 항목의 음수입니다.
x-y=1,2x-y=-4
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-4\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-2\right)}&-\frac{-1}{-1-\left(-2\right)}\\-\frac{2}{-1-\left(-2\right)}&\frac{1}{-1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}1\\-4\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\-2&1\end{matrix}\right)\left(\begin{matrix}1\\-4\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1-4\\-2-4\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\-6\end{matrix}\right)
산술 연산을 수행합니다.
x=-5,y=-6
행렬 요소 x 및 y을(를) 추출합니다.
x-1-y=0
첫 번째 수식을 검토합니다. 양쪽 모두에서 y을(를) 뺍니다.
x-y=1
양쪽에 1을(를) 더합니다. 모든 항목에 0을 더한 결과는 해당 항목 자체입니다.
2x-y=-4
두 번째 수식을 검토합니다. 양쪽 모두에서 4을(를) 뺍니다. 0에서 모든 항목을 뺀 결과는 해당 항목의 음수입니다.
x-y=1,2x-y=-4
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
x-2x-y+y=1+4
등호 부호 양쪽에서 동류항을 빼서 x-y=1에서 2x-y=-4을(를) 뺍니다.
x-2x=1+4
-y을(를) y에 추가합니다. -y 및 y이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
-x=1+4
x을(를) -2x에 추가합니다.
-x=5
1을(를) 4에 추가합니다.
x=-5
양쪽을 -1(으)로 나눕니다.
2\left(-5\right)-y=-4
2x-y=-4에서 x을(를) -5(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 y에 대한 해를 바로 찾을 수 있습니다.
-10-y=-4
2에 -5을(를) 곱합니다.
-y=6
수식의 양쪽에 10을(를) 더합니다.
y=-6
양쪽을 -1(으)로 나눕니다.
x=-5,y=-6
시스템이 이제 해결되었습니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}