\left\{ \begin{array} { l } { 6 x - 4 y = 30 } \\ { 2 x + 6 y = - 34 } \end{array} \right.
x, y에 대한 해
x=1
y=-6
그래프
공유
클립보드에 복사됨
6x-4y=30,2x+6y=-34
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
6x-4y=30
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
6x=4y+30
수식의 양쪽에 4y을(를) 더합니다.
x=\frac{1}{6}\left(4y+30\right)
양쪽을 6(으)로 나눕니다.
x=\frac{2}{3}y+5
\frac{1}{6}에 4y+30을(를) 곱합니다.
2\left(\frac{2}{3}y+5\right)+6y=-34
다른 수식 2x+6y=-34에서 \frac{2y}{3}+5을(를) x(으)로 치환합니다.
\frac{4}{3}y+10+6y=-34
2에 \frac{2y}{3}+5을(를) 곱합니다.
\frac{22}{3}y+10=-34
\frac{4y}{3}을(를) 6y에 추가합니다.
\frac{22}{3}y=-44
수식의 양쪽에서 10을(를) 뺍니다.
y=-6
수식의 양쪽을 \frac{22}{3}(으)로 나눕니다. 이는 양쪽에 분수의 역수를 곱하는 것과 같습니다.
x=\frac{2}{3}\left(-6\right)+5
x=\frac{2}{3}y+5에서 y을(를) -6(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=-4+5
\frac{2}{3}에 -6을(를) 곱합니다.
x=1
5을(를) -4에 추가합니다.
x=1,y=-6
시스템이 이제 해결되었습니다.
6x-4y=30,2x+6y=-34
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}6&-4\\2&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\-34\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}6&-4\\2&6\end{matrix}\right))\left(\begin{matrix}6&-4\\2&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-4\\2&6\end{matrix}\right))\left(\begin{matrix}30\\-34\end{matrix}\right)
\left(\begin{matrix}6&-4\\2&6\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-4\\2&6\end{matrix}\right))\left(\begin{matrix}30\\-34\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-4\\2&6\end{matrix}\right))\left(\begin{matrix}30\\-34\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{6\times 6-\left(-4\times 2\right)}&-\frac{-4}{6\times 6-\left(-4\times 2\right)}\\-\frac{2}{6\times 6-\left(-4\times 2\right)}&\frac{6}{6\times 6-\left(-4\times 2\right)}\end{matrix}\right)\left(\begin{matrix}30\\-34\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}&\frac{1}{11}\\-\frac{1}{22}&\frac{3}{22}\end{matrix}\right)\left(\begin{matrix}30\\-34\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}\times 30+\frac{1}{11}\left(-34\right)\\-\frac{1}{22}\times 30+\frac{3}{22}\left(-34\right)\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-6\end{matrix}\right)
산술 연산을 수행합니다.
x=1,y=-6
행렬 요소 x 및 y을(를) 추출합니다.
6x-4y=30,2x+6y=-34
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
2\times 6x+2\left(-4\right)y=2\times 30,6\times 2x+6\times 6y=6\left(-34\right)
6x 및 2x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 2을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 6을(를) 곱합니다.
12x-8y=60,12x+36y=-204
단순화합니다.
12x-12x-8y-36y=60+204
등호 부호 양쪽에서 동류항을 빼서 12x-8y=60에서 12x+36y=-204을(를) 뺍니다.
-8y-36y=60+204
12x을(를) -12x에 추가합니다. 12x 및 -12x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
-44y=60+204
-8y을(를) -36y에 추가합니다.
-44y=264
60을(를) 204에 추가합니다.
y=-6
양쪽을 -44(으)로 나눕니다.
2x+6\left(-6\right)=-34
2x+6y=-34에서 y을(를) -6(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
2x-36=-34
6에 -6을(를) 곱합니다.
2x=2
수식의 양쪽에 36을(를) 더합니다.
x=1
양쪽을 2(으)로 나눕니다.
x=1,y=-6
시스템이 이제 해결되었습니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}