기본 콘텐츠로 건너뛰기
x, y에 대한 해
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

3x-5y=7,4x+2y=5
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
3x-5y=7
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
3x=5y+7
수식의 양쪽에 5y을(를) 더합니다.
x=\frac{1}{3}\left(5y+7\right)
양쪽을 3(으)로 나눕니다.
x=\frac{5}{3}y+\frac{7}{3}
\frac{1}{3}에 5y+7을(를) 곱합니다.
4\left(\frac{5}{3}y+\frac{7}{3}\right)+2y=5
다른 수식 4x+2y=5에서 \frac{5y+7}{3}을(를) x(으)로 치환합니다.
\frac{20}{3}y+\frac{28}{3}+2y=5
4에 \frac{5y+7}{3}을(를) 곱합니다.
\frac{26}{3}y+\frac{28}{3}=5
\frac{20y}{3}을(를) 2y에 추가합니다.
\frac{26}{3}y=-\frac{13}{3}
수식의 양쪽에서 \frac{28}{3}을(를) 뺍니다.
y=-\frac{1}{2}
수식의 양쪽을 \frac{26}{3}(으)로 나눕니다. 이는 양쪽에 분수의 역수를 곱하는 것과 같습니다.
x=\frac{5}{3}\left(-\frac{1}{2}\right)+\frac{7}{3}
x=\frac{5}{3}y+\frac{7}{3}에서 y을(를) -\frac{1}{2}(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=-\frac{5}{6}+\frac{7}{3}
분자는 분자끼리 분모는 분모끼리 곱하여 \frac{5}{3}에 -\frac{1}{2}을(를) 곱합니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
x=\frac{3}{2}
공통분모를 찾고 분자를 더하여 \frac{7}{3}을(를) -\frac{5}{6}에 더합니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
x=\frac{3}{2},y=-\frac{1}{2}
시스템이 이제 해결되었습니다.
3x-5y=7,4x+2y=5
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}3&-5\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\5\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}3&-5\\4&2\end{matrix}\right))\left(\begin{matrix}3&-5\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\4&2\end{matrix}\right))\left(\begin{matrix}7\\5\end{matrix}\right)
\left(\begin{matrix}3&-5\\4&2\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\4&2\end{matrix}\right))\left(\begin{matrix}7\\5\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\4&2\end{matrix}\right))\left(\begin{matrix}7\\5\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-5\times 4\right)}&-\frac{-5}{3\times 2-\left(-5\times 4\right)}\\-\frac{4}{3\times 2-\left(-5\times 4\right)}&\frac{3}{3\times 2-\left(-5\times 4\right)}\end{matrix}\right)\left(\begin{matrix}7\\5\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}&\frac{5}{26}\\-\frac{2}{13}&\frac{3}{26}\end{matrix}\right)\left(\begin{matrix}7\\5\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}\times 7+\frac{5}{26}\times 5\\-\frac{2}{13}\times 7+\frac{3}{26}\times 5\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\-\frac{1}{2}\end{matrix}\right)
산술 연산을 수행합니다.
x=\frac{3}{2},y=-\frac{1}{2}
행렬 요소 x 및 y을(를) 추출합니다.
3x-5y=7,4x+2y=5
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
4\times 3x+4\left(-5\right)y=4\times 7,3\times 4x+3\times 2y=3\times 5
3x 및 4x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 4을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 3을(를) 곱합니다.
12x-20y=28,12x+6y=15
단순화합니다.
12x-12x-20y-6y=28-15
등호 부호 양쪽에서 동류항을 빼서 12x-20y=28에서 12x+6y=15을(를) 뺍니다.
-20y-6y=28-15
12x을(를) -12x에 추가합니다. 12x 및 -12x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
-26y=28-15
-20y을(를) -6y에 추가합니다.
-26y=13
28을(를) -15에 추가합니다.
y=-\frac{1}{2}
양쪽을 -26(으)로 나눕니다.
4x+2\left(-\frac{1}{2}\right)=5
4x+2y=5에서 y을(를) -\frac{1}{2}(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
4x-1=5
2에 -\frac{1}{2}을(를) 곱합니다.
4x=6
수식의 양쪽에 1을(를) 더합니다.
x=\frac{3}{2}
양쪽을 4(으)로 나눕니다.
x=\frac{3}{2},y=-\frac{1}{2}
시스템이 이제 해결되었습니다.