기본 콘텐츠로 건너뛰기
x, y에 대한 해
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

2x+4y=12,5x-8y=16
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
2x+4y=12
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
2x=-4y+12
수식의 양쪽에서 4y을(를) 뺍니다.
x=\frac{1}{2}\left(-4y+12\right)
양쪽을 2(으)로 나눕니다.
x=-2y+6
\frac{1}{2}에 -4y+12을(를) 곱합니다.
5\left(-2y+6\right)-8y=16
다른 수식 5x-8y=16에서 -2y+6을(를) x(으)로 치환합니다.
-10y+30-8y=16
5에 -2y+6을(를) 곱합니다.
-18y+30=16
-10y을(를) -8y에 추가합니다.
-18y=-14
수식의 양쪽에서 30을(를) 뺍니다.
y=\frac{7}{9}
양쪽을 -18(으)로 나눕니다.
x=-2\times \frac{7}{9}+6
x=-2y+6에서 y을(를) \frac{7}{9}(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=-\frac{14}{9}+6
-2에 \frac{7}{9}을(를) 곱합니다.
x=\frac{40}{9}
6을(를) -\frac{14}{9}에 추가합니다.
x=\frac{40}{9},y=\frac{7}{9}
시스템이 이제 해결되었습니다.
2x+4y=12,5x-8y=16
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}2&4\\5&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\16\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}2&4\\5&-8\end{matrix}\right))\left(\begin{matrix}2&4\\5&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\5&-8\end{matrix}\right))\left(\begin{matrix}12\\16\end{matrix}\right)
\left(\begin{matrix}2&4\\5&-8\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\5&-8\end{matrix}\right))\left(\begin{matrix}12\\16\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\5&-8\end{matrix}\right))\left(\begin{matrix}12\\16\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{2\left(-8\right)-4\times 5}&-\frac{4}{2\left(-8\right)-4\times 5}\\-\frac{5}{2\left(-8\right)-4\times 5}&\frac{2}{2\left(-8\right)-4\times 5}\end{matrix}\right)\left(\begin{matrix}12\\16\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{9}&\frac{1}{9}\\\frac{5}{36}&-\frac{1}{18}\end{matrix}\right)\left(\begin{matrix}12\\16\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{9}\times 12+\frac{1}{9}\times 16\\\frac{5}{36}\times 12-\frac{1}{18}\times 16\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{40}{9}\\\frac{7}{9}\end{matrix}\right)
산술 연산을 수행합니다.
x=\frac{40}{9},y=\frac{7}{9}
행렬 요소 x 및 y을(를) 추출합니다.
2x+4y=12,5x-8y=16
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
5\times 2x+5\times 4y=5\times 12,2\times 5x+2\left(-8\right)y=2\times 16
2x 및 5x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 5을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 2을(를) 곱합니다.
10x+20y=60,10x-16y=32
단순화합니다.
10x-10x+20y+16y=60-32
등호 부호 양쪽에서 동류항을 빼서 10x+20y=60에서 10x-16y=32을(를) 뺍니다.
20y+16y=60-32
10x을(를) -10x에 추가합니다. 10x 및 -10x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
36y=60-32
20y을(를) 16y에 추가합니다.
36y=28
60을(를) -32에 추가합니다.
y=\frac{7}{9}
양쪽을 36(으)로 나눕니다.
5x-8\times \frac{7}{9}=16
5x-8y=16에서 y을(를) \frac{7}{9}(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
5x-\frac{56}{9}=16
-8에 \frac{7}{9}을(를) 곱합니다.
5x=\frac{200}{9}
수식의 양쪽에 \frac{56}{9}을(를) 더합니다.
x=\frac{40}{9}
양쪽을 5(으)로 나눕니다.
x=\frac{40}{9},y=\frac{7}{9}
시스템이 이제 해결되었습니다.