기본 콘텐츠로 건너뛰기
x, y에 대한 해
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

x+y+2-3y=6
첫 번째 수식을 검토합니다. 수식의 양쪽 모두에 3을(를) 곱합니다.
x-2y+2=6
y과(와) -3y을(를) 결합하여 -2y(을)를 구합니다.
x-2y=6-2
양쪽 모두에서 2을(를) 뺍니다.
x-2y=4
6에서 2을(를) 빼고 4을(를) 구합니다.
3x+2\times 2y=6x-8
두 번째 수식을 검토합니다. 수식의 양쪽을 2,3의 최소 공통 배수인 6(으)로 곱합니다.
3x+4y=6x-8
2과(와) 2을(를) 곱하여 4(을)를 구합니다.
3x+4y-6x=-8
양쪽 모두에서 6x을(를) 뺍니다.
-3x+4y=-8
3x과(와) -6x을(를) 결합하여 -3x(을)를 구합니다.
x-2y=4,-3x+4y=-8
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
x-2y=4
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
x=2y+4
수식의 양쪽에 2y을(를) 더합니다.
-3\left(2y+4\right)+4y=-8
다른 수식 -3x+4y=-8에서 4+2y을(를) x(으)로 치환합니다.
-6y-12+4y=-8
-3에 4+2y을(를) 곱합니다.
-2y-12=-8
-6y을(를) 4y에 추가합니다.
-2y=4
수식의 양쪽에 12을(를) 더합니다.
y=-2
양쪽을 -2(으)로 나눕니다.
x=2\left(-2\right)+4
x=2y+4에서 y을(를) -2(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=-4+4
2에 -2을(를) 곱합니다.
x=0
4을(를) -4에 추가합니다.
x=0,y=-2
시스템이 이제 해결되었습니다.
x+y+2-3y=6
첫 번째 수식을 검토합니다. 수식의 양쪽 모두에 3을(를) 곱합니다.
x-2y+2=6
y과(와) -3y을(를) 결합하여 -2y(을)를 구합니다.
x-2y=6-2
양쪽 모두에서 2을(를) 뺍니다.
x-2y=4
6에서 2을(를) 빼고 4을(를) 구합니다.
3x+2\times 2y=6x-8
두 번째 수식을 검토합니다. 수식의 양쪽을 2,3의 최소 공통 배수인 6(으)로 곱합니다.
3x+4y=6x-8
2과(와) 2을(를) 곱하여 4(을)를 구합니다.
3x+4y-6x=-8
양쪽 모두에서 6x을(를) 뺍니다.
-3x+4y=-8
3x과(와) -6x을(를) 결합하여 -3x(을)를 구합니다.
x-2y=4,-3x+4y=-8
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}1&-2\\-3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-8\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}1&-2\\-3&4\end{matrix}\right))\left(\begin{matrix}1&-2\\-3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-3&4\end{matrix}\right))\left(\begin{matrix}4\\-8\end{matrix}\right)
\left(\begin{matrix}1&-2\\-3&4\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-3&4\end{matrix}\right))\left(\begin{matrix}4\\-8\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-3&4\end{matrix}\right))\left(\begin{matrix}4\\-8\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-2\left(-3\right)\right)}&-\frac{-2}{4-\left(-2\left(-3\right)\right)}\\-\frac{-3}{4-\left(-2\left(-3\right)\right)}&\frac{1}{4-\left(-2\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}4\\-8\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&-1\\-\frac{3}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}4\\-8\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\times 4-\left(-8\right)\\-\frac{3}{2}\times 4-\frac{1}{2}\left(-8\right)\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-2\end{matrix}\right)
산술 연산을 수행합니다.
x=0,y=-2
행렬 요소 x 및 y을(를) 추출합니다.
x+y+2-3y=6
첫 번째 수식을 검토합니다. 수식의 양쪽 모두에 3을(를) 곱합니다.
x-2y+2=6
y과(와) -3y을(를) 결합하여 -2y(을)를 구합니다.
x-2y=6-2
양쪽 모두에서 2을(를) 뺍니다.
x-2y=4
6에서 2을(를) 빼고 4을(를) 구합니다.
3x+2\times 2y=6x-8
두 번째 수식을 검토합니다. 수식의 양쪽을 2,3의 최소 공통 배수인 6(으)로 곱합니다.
3x+4y=6x-8
2과(와) 2을(를) 곱하여 4(을)를 구합니다.
3x+4y-6x=-8
양쪽 모두에서 6x을(를) 뺍니다.
-3x+4y=-8
3x과(와) -6x을(를) 결합하여 -3x(을)를 구합니다.
x-2y=4,-3x+4y=-8
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
-3x-3\left(-2\right)y=-3\times 4,-3x+4y=-8
x 및 -3x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 -3을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 1을(를) 곱합니다.
-3x+6y=-12,-3x+4y=-8
단순화합니다.
-3x+3x+6y-4y=-12+8
등호 부호 양쪽에서 동류항을 빼서 -3x+6y=-12에서 -3x+4y=-8을(를) 뺍니다.
6y-4y=-12+8
-3x을(를) 3x에 추가합니다. -3x 및 3x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
2y=-12+8
6y을(를) -4y에 추가합니다.
2y=-4
-12을(를) 8에 추가합니다.
y=-2
양쪽을 2(으)로 나눕니다.
-3x+4\left(-2\right)=-8
-3x+4y=-8에서 y을(를) -2(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
-3x-8=-8
4에 -2을(를) 곱합니다.
-3x=0
수식의 양쪽에 8을(를) 더합니다.
x=0
양쪽을 -3(으)로 나눕니다.
x=0,y=-2
시스템이 이제 해결되었습니다.