기본 콘텐츠로 건너뛰기
x, y에 대한 해
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

x-4y=-13,6x+4y=6
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
x-4y=-13
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
x=4y-13
수식의 양쪽에 4y을(를) 더합니다.
6\left(4y-13\right)+4y=6
다른 수식 6x+4y=6에서 4y-13을(를) x(으)로 치환합니다.
24y-78+4y=6
6에 4y-13을(를) 곱합니다.
28y-78=6
24y을(를) 4y에 추가합니다.
28y=84
수식의 양쪽에 78을(를) 더합니다.
y=3
양쪽을 28(으)로 나눕니다.
x=4\times 3-13
x=4y-13에서 y을(를) 3(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=12-13
4에 3을(를) 곱합니다.
x=-1
-13을(를) 12에 추가합니다.
x=-1,y=3
시스템이 이제 해결되었습니다.
x-4y=-13,6x+4y=6
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}1&-4\\6&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-13\\6\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}1&-4\\6&4\end{matrix}\right))\left(\begin{matrix}1&-4\\6&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\6&4\end{matrix}\right))\left(\begin{matrix}-13\\6\end{matrix}\right)
\left(\begin{matrix}1&-4\\6&4\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\6&4\end{matrix}\right))\left(\begin{matrix}-13\\6\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\6&4\end{matrix}\right))\left(\begin{matrix}-13\\6\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-4\times 6\right)}&-\frac{-4}{4-\left(-4\times 6\right)}\\-\frac{6}{4-\left(-4\times 6\right)}&\frac{1}{4-\left(-4\times 6\right)}\end{matrix}\right)\left(\begin{matrix}-13\\6\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{1}{7}\\-\frac{3}{14}&\frac{1}{28}\end{matrix}\right)\left(\begin{matrix}-13\\6\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\left(-13\right)+\frac{1}{7}\times 6\\-\frac{3}{14}\left(-13\right)+\frac{1}{28}\times 6\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
산술 연산을 수행합니다.
x=-1,y=3
행렬 요소 x 및 y을(를) 추출합니다.
x-4y=-13,6x+4y=6
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
6x+6\left(-4\right)y=6\left(-13\right),6x+4y=6
x 및 6x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 6을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 1을(를) 곱합니다.
6x-24y=-78,6x+4y=6
단순화합니다.
6x-6x-24y-4y=-78-6
등호 부호 양쪽에서 동류항을 빼서 6x-24y=-78에서 6x+4y=6을(를) 뺍니다.
-24y-4y=-78-6
6x을(를) -6x에 추가합니다. 6x 및 -6x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
-28y=-78-6
-24y을(를) -4y에 추가합니다.
-28y=-84
-78을(를) -6에 추가합니다.
y=3
양쪽을 -28(으)로 나눕니다.
6x+4\times 3=6
6x+4y=6에서 y을(를) 3(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
6x+12=6
4에 3을(를) 곱합니다.
6x=-6
수식의 양쪽에서 12을(를) 뺍니다.
x=-1
양쪽을 6(으)로 나눕니다.
x=-1,y=3
시스템이 이제 해결되었습니다.