기본 콘텐츠로 건너뛰기
계산
Tick mark Image
x 관련 미분
Tick mark Image

비슷한 문제의 웹 검색 결과

공유

\int 2\sqrt{x}\mathrm{d}x+\int -\sqrt[4]{x}\mathrm{d}x
항별로 총계를 적분합니다.
2\int \sqrt{x}\mathrm{d}x-\int \sqrt[4]{x}\mathrm{d}x
각 항에서 상수를 인수 분해합니다.
\frac{4x^{\frac{3}{2}}}{3}-\int \sqrt[4]{x}\mathrm{d}x
\sqrt{x}을(를) x^{\frac{1}{2}}(으)로 다시 작성합니다. k\neq -1에 대 한 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} 이므로 \frac{x^{\frac{3}{2}}}{\frac{3}{2}}으로 \int x^{\frac{1}{2}}\mathrm{d}x를 바꾸십시오. 단순화합니다. 2에 \frac{2x^{\frac{3}{2}}}{3}을(를) 곱합니다.
\frac{4x^{\frac{3}{2}}}{3}-\frac{4x^{\frac{5}{4}}}{5}
\sqrt[4]{x}을(를) x^{\frac{1}{4}}(으)로 다시 작성합니다. k\neq -1에 대 한 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} 이므로 \frac{x^{\frac{5}{4}}}{\frac{5}{4}}으로 \int x^{\frac{1}{4}}\mathrm{d}x를 바꾸십시오. 단순화합니다. -1에 \frac{4x^{\frac{5}{4}}}{5}을(를) 곱합니다.
\frac{4x^{\frac{3}{2}}}{3}-\frac{4x^{\frac{5}{4}}}{5}+С
F\left(x\right) f\left(x\right)의 antiderivative 경우 f\left(x\right)의 모든 파생을 방지 하는 것이 F\left(x\right)+C에 의해 제공 됩니다. 따라서 결과에 C\in \mathrm{R}의 통합 상수를 추가 합니다.