계산
A_{8}\left(\frac{x^{3}y^{6}}{3}+\frac{3y^{2}x^{7}}{7}+\frac{3y^{4}x^{5}}{5}+\frac{x^{9}}{9}\right)+СA_{8}+С_{1}
x 관련 미분
A_{8}x^{2}\left(x^{2}+y^{2}\right)^{3}
공유
클립보드에 복사됨
\int x^{2}\left(x^{2}+y^{2}\right)^{3}\mathrm{d}xA_{8}
일반 적분 규칙 \int a\mathrm{d}A_{8}=aA_{8} 표를 사용 하 여 \int x^{2}\left(x^{2}+y^{2}\right)^{3}\mathrm{d}x의 적분을 구합니다.
\left(\frac{y^{6}x^{3}}{3}+\frac{3y^{4}x^{5}}{5}+\frac{3y^{2}x^{7}}{7}+\frac{x^{9}}{9}+С\right)A_{8}
단순화합니다.
\left(\frac{y^{6}x^{3}}{3}+\frac{3y^{4}x^{5}}{5}+\frac{3y^{2}x^{7}}{7}+\frac{x^{9}}{9}+С\right)A_{8}+С
F\left(A_{8}\right) f\left(A_{8}\right)의 antiderivative 경우 f\left(A_{8}\right)의 모든 파생을 방지 하는 것이 F\left(A_{8}\right)+C에 의해 제공 됩니다. 따라서 결과에 C\in \mathrm{R}의 통합 상수를 추가 합니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}