계산
\frac{x^{5}}{5}-\frac{x^{4}}{2}+\frac{5x^{3}}{3}-5x^{2}+С
x 관련 미분
x\left(x-2\right)\left(x^{2}+5\right)
공유
클립보드에 복사됨
\int \frac{x\left(x-2\right)\left(x+2\right)\left(x^{2}+5\right)}{x+2}\mathrm{d}x
\frac{x^{5}+x^{3}-20x}{x+2}에서 인수 분해되지 않은 식을 인수 분해합니다.
\int x\left(x-2\right)\left(x^{2}+5\right)\mathrm{d}x
분자와 분모 모두에서 x+2을(를) 상쇄합니다.
\int x^{4}-2x^{3}+5x^{2}-10x\mathrm{d}x
식을 확장합니다.
\int x^{4}\mathrm{d}x+\int -2x^{3}\mathrm{d}x+\int 5x^{2}\mathrm{d}x+\int -10x\mathrm{d}x
항별로 총계를 적분합니다.
\int x^{4}\mathrm{d}x-2\int x^{3}\mathrm{d}x+5\int x^{2}\mathrm{d}x-10\int x\mathrm{d}x
각 항에서 상수를 인수 분해합니다.
\frac{x^{5}}{5}-2\int x^{3}\mathrm{d}x+5\int x^{2}\mathrm{d}x-10\int x\mathrm{d}x
k\neq -1에 대한 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}이므로 \int x^{4}\mathrm{d}x을(를) \frac{x^{5}}{5}로 바꿉니다.
\frac{x^{5}}{5}-\frac{x^{4}}{2}+5\int x^{2}\mathrm{d}x-10\int x\mathrm{d}x
k\neq -1에 대한 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}이므로 \int x^{3}\mathrm{d}x을(를) \frac{x^{4}}{4}로 바꿉니다. -2에 \frac{x^{4}}{4}을(를) 곱합니다.
\frac{x^{5}}{5}-\frac{x^{4}}{2}+\frac{5x^{3}}{3}-10\int x\mathrm{d}x
k\neq -1에 대한 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}이므로 \int x^{2}\mathrm{d}x을(를) \frac{x^{3}}{3}로 바꿉니다. 5에 \frac{x^{3}}{3}을(를) 곱합니다.
\frac{x^{5}}{5}-\frac{x^{4}}{2}+\frac{5x^{3}}{3}-5x^{2}
k\neq -1에 대한 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}이므로 \int x\mathrm{d}x을(를) \frac{x^{2}}{2}로 바꿉니다. -10에 \frac{x^{2}}{2}을(를) 곱합니다.
-5x^{2}+\frac{5x^{3}}{3}-\frac{x^{4}}{2}+\frac{x^{5}}{5}
단순화합니다.
-5x^{2}+\frac{5x^{3}}{3}-\frac{x^{4}}{2}+\frac{x^{5}}{5}+С
F\left(x\right) f\left(x\right)의 antiderivative 경우 f\left(x\right)의 모든 파생을 방지 하는 것이 F\left(x\right)+C에 의해 제공 됩니다. 따라서 결과에 C\in \mathrm{R}의 통합 상수를 추가 합니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}