계산
10\left(\sqrt{3}-\sqrt{2}\right)\approx 3.178372452
공유
클립보드에 복사됨
\int \frac{5}{\sqrt{x}}\mathrm{d}x
먼저 부정적분을 구합니다.
5\int \frac{1}{\sqrt{x}}\mathrm{d}x
\int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x을(를) 사용하여 상수를 인수 분해합니다.
10\sqrt{x}
\frac{1}{\sqrt{x}}을(를) x^{-\frac{1}{2}}(으)로 다시 작성합니다. k\neq -1에 대한 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}이므로 \int x^{-\frac{1}{2}}\mathrm{d}x을(를) \frac{x^{\frac{1}{2}}}{\frac{1}{2}}로 바꿉니다. 지수를 근호 형식으로 단순화하고 변환합니다.
10\times 3^{\frac{1}{2}}-10\times 2^{\frac{1}{2}}
정적분은 적분의 상한에서 구해진 수식의 미분 계수에서 적분의 하한에서 계산된 미분 계수를 뺀 값입니다.
10\sqrt{3}-10\sqrt{2}
단순화합니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}