기본 콘텐츠로 건너뛰기
계산
Tick mark Image
x 관련 미분
Tick mark Image

비슷한 문제의 웹 검색 결과

공유

\int \left(x^{3}-3x^{2}+3x-1\right)\left(x-2\right)\mathrm{d}x
이항 정리 \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}을(를) \left(x-1\right)^{3}을(를) 확장합니다.
\int x^{4}-5x^{3}+9x^{2}-7x+2\mathrm{d}x
분배 법칙을 사용하여 x^{3}-3x^{2}+3x-1에 x-2(을)를 곱하고 동류항을 결합합니다.
\int x^{4}\mathrm{d}x+\int -5x^{3}\mathrm{d}x+\int 9x^{2}\mathrm{d}x+\int -7x\mathrm{d}x+\int 2\mathrm{d}x
항별로 총계를 적분합니다.
\int x^{4}\mathrm{d}x-5\int x^{3}\mathrm{d}x+9\int x^{2}\mathrm{d}x-7\int x\mathrm{d}x+\int 2\mathrm{d}x
각 항에서 상수를 인수 분해합니다.
\frac{x^{5}}{5}-5\int x^{3}\mathrm{d}x+9\int x^{2}\mathrm{d}x-7\int x\mathrm{d}x+\int 2\mathrm{d}x
k\neq -1에 대 한 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} 이므로 \frac{x^{5}}{5}으로 \int x^{4}\mathrm{d}x를 바꾸십시오.
\frac{x^{5}}{5}-\frac{5x^{4}}{4}+9\int x^{2}\mathrm{d}x-7\int x\mathrm{d}x+\int 2\mathrm{d}x
k\neq -1에 대 한 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} 이므로 \frac{x^{4}}{4}으로 \int x^{3}\mathrm{d}x를 바꾸십시오. -5에 \frac{x^{4}}{4}을(를) 곱합니다.
\frac{x^{5}}{5}-\frac{5x^{4}}{4}+3x^{3}-7\int x\mathrm{d}x+\int 2\mathrm{d}x
k\neq -1에 대 한 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} 이므로 \frac{x^{3}}{3}으로 \int x^{2}\mathrm{d}x를 바꾸십시오. 9에 \frac{x^{3}}{3}을(를) 곱합니다.
\frac{x^{5}}{5}-\frac{5x^{4}}{4}+3x^{3}-\frac{7x^{2}}{2}+\int 2\mathrm{d}x
k\neq -1에 대 한 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} 이므로 \frac{x^{2}}{2}으로 \int x\mathrm{d}x를 바꾸십시오. -7에 \frac{x^{2}}{2}을(를) 곱합니다.
\frac{x^{5}}{5}-\frac{5x^{4}}{4}+3x^{3}-\frac{7x^{2}}{2}+2x
일반 적분 규칙 \int a\mathrm{d}x=ax 표를 사용 하 여 2의 적분을 구합니다.
-\frac{7x^{2}}{2}+2x+3x^{3}-\frac{5x^{4}}{4}+\frac{x^{5}}{5}
단순화합니다.
-\frac{7x^{2}}{2}+2x+3x^{3}-\frac{5x^{4}}{4}+\frac{x^{5}}{5}+С
F\left(x\right) f\left(x\right)의 antiderivative 경우 f\left(x\right)의 모든 파생을 방지 하는 것이 F\left(x\right)+C에 의해 제공 됩니다. 따라서 결과에 C\in \mathrm{R}의 통합 상수를 추가 합니다.