계산
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+8x+С
x 관련 미분
\left(x^{2}+2\right)^{3}
공유
클립보드에 복사됨
\int \left(x^{2}\right)^{3}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
이항 정리 \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}을(를) \left(x^{2}+2\right)^{3}을(를) 확장합니다.
\int x^{6}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
다른 곱으로 제곱하려면 지수를 곱합니다. 2과(와) 3을(를) 곱하여 6을(를) 구합니다.
\int x^{6}+6x^{4}+12x^{2}+8\mathrm{d}x
다른 곱으로 제곱하려면 지수를 곱합니다. 2과(와) 2을(를) 곱하여 4을(를) 구합니다.
\int x^{6}\mathrm{d}x+\int 6x^{4}\mathrm{d}x+\int 12x^{2}\mathrm{d}x+\int 8\mathrm{d}x
항별로 총계를 적분합니다.
\int x^{6}\mathrm{d}x+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
각 항에서 상수를 인수 분해합니다.
\frac{x^{7}}{7}+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
k\neq -1에 대 한 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} 이므로 \frac{x^{7}}{7}으로 \int x^{6}\mathrm{d}x를 바꾸십시오.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
k\neq -1에 대 한 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} 이므로 \frac{x^{5}}{5}으로 \int x^{4}\mathrm{d}x를 바꾸십시오. 6에 \frac{x^{5}}{5}을(를) 곱합니다.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+\int 8\mathrm{d}x
k\neq -1에 대 한 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} 이므로 \frac{x^{3}}{3}으로 \int x^{2}\mathrm{d}x를 바꾸십시오. 12에 \frac{x^{3}}{3}을(를) 곱합니다.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+8x
일반 적분 규칙 \int a\mathrm{d}x=ax 표를 사용 하 여 8의 적분을 구합니다.
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}
단순화합니다.
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}+С
F\left(x\right) f\left(x\right)의 antiderivative 경우 f\left(x\right)의 모든 파생을 방지 하는 것이 F\left(x\right)+C에 의해 제공 됩니다. 따라서 결과에 C\in \mathrm{R}의 통합 상수를 추가 합니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}