기본 콘텐츠로 건너뛰기
계산
Tick mark Image
x 관련 미분
Tick mark Image

비슷한 문제의 웹 검색 결과

공유

\int 2x^{5}\mathrm{d}x+\int \frac{3}{x}\mathrm{d}x+\int \frac{1}{x^{9}}\mathrm{d}x
항별로 총계를 적분합니다.
2\int x^{5}\mathrm{d}x+3\int \frac{1}{x}\mathrm{d}x+\int \frac{1}{x^{9}}\mathrm{d}x
각 항에서 상수를 인수 분해합니다.
\frac{x^{6}}{3}+3\int \frac{1}{x}\mathrm{d}x+\int \frac{1}{x^{9}}\mathrm{d}x
k\neq -1에 대 한 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} 이므로 \frac{x^{6}}{6}으로 \int x^{5}\mathrm{d}x를 바꾸십시오. 2에 \frac{x^{6}}{6}을(를) 곱합니다.
\frac{x^{6}}{3}+3\ln(|x|)+\int \frac{1}{x^{9}}\mathrm{d}x
일반적인 적분 표에서 \int \frac{1}{x}\mathrm{d}x=\ln(|x|)을(를) 사용하여 결과를 구합니다.
\frac{x^{6}}{3}+3\ln(|x|)-\frac{1}{8x^{8}}
k\neq -1에 대 한 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} 이므로 -\frac{1}{8x^{8}}으로 \int \frac{1}{x^{9}}\mathrm{d}x를 바꾸십시오.
\frac{x^{6}}{3}+3\ln(|x|)-\frac{1}{8x^{8}}+С
F\left(x\right) f\left(x\right)의 antiderivative 경우 f\left(x\right)의 모든 파생을 방지 하는 것이 F\left(x\right)+C에 의해 제공 됩니다. 따라서 결과에 C\in \mathrm{R}의 통합 상수를 추가 합니다.