기본 콘텐츠로 건너뛰기
계산
Tick mark Image
t 관련 미분
Tick mark Image

비슷한 문제의 웹 검색 결과

공유

\sqrt{6}\int t\mathrm{d}t
\int af\left(t\right)\mathrm{d}t=a\int f\left(t\right)\mathrm{d}t을(를) 사용하여 상수를 인수 분해합니다.
\sqrt{6}\times \frac{t^{2}}{2}
k\neq -1에 대 한 \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} 이므로 \frac{t^{2}}{2}으로 \int t\mathrm{d}t를 바꾸십시오.
\frac{\sqrt{6}t^{2}}{2}
단순화합니다.
\frac{\sqrt{6}t^{2}}{2}+С
F\left(t\right) f\left(t\right)의 antiderivative 경우 f\left(t\right)의 모든 파생을 방지 하는 것이 F\left(t\right)+C에 의해 제공 됩니다. 따라서 결과에 C\in \mathrm{R}의 통합 상수를 추가 합니다.