기본 콘텐츠로 건너뛰기
x에 대한 해
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

\frac{4\times 2}{10x}+\frac{x}{10x}<\frac{3}{2x}
식을 더하거나 빼려면 해당 식의 분모를 동일하게 맞추세요. 5x과(와) 10의 최소 공배수는 10x입니다. \frac{4}{5x}에 \frac{2}{2}을(를) 곱합니다. \frac{1}{10}에 \frac{x}{x}을(를) 곱합니다.
\frac{4\times 2+x}{10x}<\frac{3}{2x}
\frac{4\times 2}{10x} 및 \frac{x}{10x}의 분모가 같으므로 분자를 더하여 이 둘을 더합니다.
\frac{8+x}{10x}<\frac{3}{2x}
4\times 2+x에서 곱하기를 합니다.
\frac{8+x}{10x}-\frac{3}{2x}<0
양쪽 모두에서 \frac{3}{2x}을(를) 뺍니다.
\frac{8+x}{10x}-\frac{3\times 5}{10x}<0
식을 더하거나 빼려면 해당 식의 분모를 동일하게 맞추세요. 10x과(와) 2x의 최소 공배수는 10x입니다. \frac{3}{2x}에 \frac{5}{5}을(를) 곱합니다.
\frac{8+x-3\times 5}{10x}<0
\frac{8+x}{10x} 및 \frac{3\times 5}{10x}의 분모가 같으므로 분자를 빼서 이 둘을 뺍니다.
\frac{8+x-15}{10x}<0
8+x-3\times 5에서 곱하기를 합니다.
\frac{-7+x}{10x}<0
8+x-15의 동류항을 결합합니다.
x-7>0 10x<0
곱이 음수가 되려면 x-7 및 10x이(가) 반대 부호여야 합니다. x-7이(가) 양수이고 10x이(가) 음수인 경우를 고려합니다.
x\in \emptyset
모든 x에 거짓입니다.
10x>0 x-7<0
10x이(가) 양수이고 x-7이(가) 음수인 경우를 고려합니다.
x\in \left(0,7\right)
두 부등식 모두를 만족하는 해답은 x\in \left(0,7\right)입니다.
x\in \left(0,7\right)
최종 해답은 얻은 해의 합입니다.