계산
5\left(\sqrt{2}+\sqrt{6}\right)\approx 19.318516526
공유
클립보드에 복사됨
\frac{20\left(\sqrt{6}+\sqrt{2}\right)}{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}+\sqrt{2}\right)}
분자와 분모를 \sqrt{6}+\sqrt{2}(으)로 곱하여 \frac{20}{\sqrt{6}-\sqrt{2}} 분모를 유리화합니다.
\frac{20\left(\sqrt{6}+\sqrt{2}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}}
\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}+\sqrt{2}\right)을(를) 고려하세요. 곱하기는 \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} 규칙을 사용하여 제곱의 차로 변환할 수 있습니다.
\frac{20\left(\sqrt{6}+\sqrt{2}\right)}{6-2}
\sqrt{6}을(를) 제곱합니다. \sqrt{2}을(를) 제곱합니다.
\frac{20\left(\sqrt{6}+\sqrt{2}\right)}{4}
6에서 2을(를) 빼고 4을(를) 구합니다.
5\left(\sqrt{6}+\sqrt{2}\right)
20\left(\sqrt{6}+\sqrt{2}\right)을(를) 4(으)로 나눠서 5\left(\sqrt{6}+\sqrt{2}\right)을(를) 구합니다.
5\sqrt{6}+5\sqrt{2}
분배 법칙을 사용하여 5에 \sqrt{6}+\sqrt{2}(을)를 곱합니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}