기본 콘텐츠로 건너뛰기
y 관련 미분
Tick mark Image
계산
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

\frac{\left(2y^{2}+7y^{1}+6\right)\frac{\mathrm{d}}{\mathrm{d}y}(y^{1})-y^{1}\frac{\mathrm{d}}{\mathrm{d}y}(2y^{2}+7y^{1}+6)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
임의의 두 미분 함수에 대해, 두 함수의 몫의 미분 계수는 분모와 분자의 미분 계수를 곱한 값에서 분자와 분모의 미분 계수를 곱한 값을 빼고 모두를 제곱 분모로 나눈 값입니다.
\frac{\left(2y^{2}+7y^{1}+6\right)y^{1-1}-y^{1}\left(2\times 2y^{2-1}+7y^{1-1}\right)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
다항식의 미분 계수는 해당 항의 미분 계수의 합입니다. 상수 항의 미분 계수는 0입니다. ax^{n}의 미분 계수는 nax^{n-1}입니다.
\frac{\left(2y^{2}+7y^{1}+6\right)y^{0}-y^{1}\left(4y^{1}+7y^{0}\right)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
단순화합니다.
\frac{2y^{2}y^{0}+7y^{1}y^{0}+6y^{0}-y^{1}\left(4y^{1}+7y^{0}\right)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
2y^{2}+7y^{1}+6에 y^{0}을(를) 곱합니다.
\frac{2y^{2}y^{0}+7y^{1}y^{0}+6y^{0}-\left(y^{1}\times 4y^{1}+y^{1}\times 7y^{0}\right)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
y^{1}에 4y^{1}+7y^{0}을(를) 곱합니다.
\frac{2y^{2}+7y^{1}+6y^{0}-\left(4y^{1+1}+7y^{1}\right)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
같은 기수의 제곱을 곱하려면 해당 지수를 더합니다.
\frac{2y^{2}+7y^{1}+6y^{0}-\left(4y^{2}+7y^{1}\right)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
단순화합니다.
\frac{-2y^{2}+6y^{0}}{\left(2y^{2}+7y^{1}+6\right)^{2}}
동류항을 결합합니다.
\frac{-2y^{2}+6y^{0}}{\left(2y^{2}+7y+6\right)^{2}}
모든 항 t에 대해, t^{1}=t.
\frac{-2y^{2}+6\times 1}{\left(2y^{2}+7y+6\right)^{2}}
0 이외의 모든 항 t에 대해, t^{0}=1.
\frac{-2y^{2}+6}{\left(2y^{2}+7y+6\right)^{2}}
모든 항 t에 대해, t\times 1=t 및 1t=t.