기본 콘텐츠로 건너뛰기
c에 대한 해
Tick mark Image
d에 대한 해
Tick mark Image

비슷한 문제의 웹 검색 결과

공유

r\left(2-d\right)=cy
수식의 양쪽 모두에 y을(를) 곱합니다.
2r-rd=cy
분배 법칙을 사용하여 r에 2-d(을)를 곱합니다.
cy=2r-rd
모든 변수 항이 왼쪽에 오도록 위치를 바꿉니다.
yc=2r-dr
이 수식은 표준 형식입니다.
\frac{yc}{y}=\frac{r\left(2-d\right)}{y}
양쪽을 y(으)로 나눕니다.
c=\frac{r\left(2-d\right)}{y}
y(으)로 나누면 y(으)로 곱하기가 원상태로 돌아갑니다.
r\left(2-d\right)=cy
수식의 양쪽 모두에 y을(를) 곱합니다.
2r-rd=cy
분배 법칙을 사용하여 r에 2-d(을)를 곱합니다.
-rd=cy-2r
양쪽 모두에서 2r을(를) 뺍니다.
\left(-r\right)d=cy-2r
이 수식은 표준 형식입니다.
\frac{\left(-r\right)d}{-r}=\frac{cy-2r}{-r}
양쪽을 -r(으)로 나눕니다.
d=\frac{cy-2r}{-r}
-r(으)로 나누면 -r(으)로 곱하기가 원상태로 돌아갑니다.
d=-\frac{cy}{r}+2
cy-2r을(를) -r(으)로 나눕니다.