h에 대한 해 (complex solution)
\left\{\begin{matrix}h=0\text{, }&\nexists n_{2}\in \mathrm{Z}\text{ : }\alpha =\pi n_{2}\text{ and }\nexists n_{3}\in \mathrm{Z}\text{ : }\alpha =180-\pi n_{3}\\h\in \mathrm{C}\text{, }&\frac{i}{e^{180i-i\alpha }}-ie^{180i-i\alpha }-2\sin(\alpha )=0\text{ and }\nexists n_{2}\in \mathrm{Z}\text{ : }\alpha =\pi n_{2}\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\alpha =180-\pi n_{1}\end{matrix}\right.
h에 대한 해
\left\{\begin{matrix}h=0\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\alpha =\pi n_{1}+180-57\pi \text{ and }\nexists n_{2}\in \mathrm{Z}\text{ : }\alpha =\pi n_{2}\\h\in \mathrm{R}\text{, }&\exists n_{3}\in \mathrm{Z}\text{ : }\alpha =\pi n_{3}+\arcsin(\frac{\sin(180)}{\sqrt{2\left(\cos(180)+1\right)}})+\pi \end{matrix}\right.
α에 대한 해
\left\{\begin{matrix}\\\alpha =\pi n_{2}+\arcsin(\frac{\sin(180)\sqrt{\frac{2}{\cos(180)+1}}}{2})+\pi \text{, }n_{2}\in \mathrm{Z}\text{, }&\text{unconditionally}\\\alpha \notin \pi n_{1}+180-57\pi ,\pi n_{1}\text{, }\forall n_{1}\in \mathrm{Z}\text{, }&h=0\end{matrix}\right.
퀴즈
Trigonometry
다음과 비슷한 문제 5개:
\frac { h } { \sin ( 180 - \alpha ) } = \frac { h } { \sin ( \alpha ) }
공유
클립보드에 복사됨
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}