P_1에 대한 해 (complex solution)
\left\{\begin{matrix}P_{1}=\frac{P_{2}T_{1}V_{2}}{T_{2}V_{1}}\text{, }&T_{2}\neq 0\text{ and }V_{1}\neq 0\text{ and }T_{1}\neq 0\\P_{1}\in \mathrm{C}\text{, }&\left(V_{2}=0\text{ or }P_{2}=0\right)\text{ and }V_{1}=0\text{ and }T_{2}\neq 0\text{ and }T_{1}\neq 0\end{matrix}\right.
P_2에 대한 해 (complex solution)
\left\{\begin{matrix}P_{2}=\frac{P_{1}T_{2}V_{1}}{T_{1}V_{2}}\text{, }&T_{1}\neq 0\text{ and }V_{2}\neq 0\text{ and }T_{2}\neq 0\\P_{2}\in \mathrm{C}\text{, }&\left(V_{1}=0\text{ or }P_{1}=0\right)\text{ and }V_{2}=0\text{ and }T_{1}\neq 0\text{ and }T_{2}\neq 0\end{matrix}\right.
P_1에 대한 해
\left\{\begin{matrix}P_{1}=\frac{P_{2}T_{1}V_{2}}{T_{2}V_{1}}\text{, }&T_{2}\neq 0\text{ and }V_{1}\neq 0\text{ and }T_{1}\neq 0\\P_{1}\in \mathrm{R}\text{, }&\left(V_{2}=0\text{ or }P_{2}=0\right)\text{ and }V_{1}=0\text{ and }T_{2}\neq 0\text{ and }T_{1}\neq 0\end{matrix}\right.
P_2에 대한 해
\left\{\begin{matrix}P_{2}=\frac{P_{1}T_{2}V_{1}}{T_{1}V_{2}}\text{, }&T_{1}\neq 0\text{ and }V_{2}\neq 0\text{ and }T_{2}\neq 0\\P_{2}\in \mathrm{R}\text{, }&\left(V_{1}=0\text{ or }P_{1}=0\right)\text{ and }V_{2}=0\text{ and }T_{1}\neq 0\text{ and }T_{2}\neq 0\end{matrix}\right.
공유
클립보드에 복사됨
T_{2}P_{1}V_{1}=T_{1}P_{2}V_{2}
수식의 양쪽을 T_{1},T_{2}의 최소 공통 배수인 T_{1}T_{2}(으)로 곱합니다.
P_{1}T_{2}V_{1}=P_{2}T_{1}V_{2}
항의 순서를 재정렬합니다.
T_{2}V_{1}P_{1}=P_{2}T_{1}V_{2}
이 수식은 표준 형식입니다.
\frac{T_{2}V_{1}P_{1}}{T_{2}V_{1}}=\frac{P_{2}T_{1}V_{2}}{T_{2}V_{1}}
양쪽을 T_{2}V_{1}(으)로 나눕니다.
P_{1}=\frac{P_{2}T_{1}V_{2}}{T_{2}V_{1}}
T_{2}V_{1}(으)로 나누면 T_{2}V_{1}(으)로 곱하기가 원상태로 돌아갑니다.
T_{2}P_{1}V_{1}=T_{1}P_{2}V_{2}
수식의 양쪽을 T_{1},T_{2}의 최소 공통 배수인 T_{1}T_{2}(으)로 곱합니다.
T_{1}P_{2}V_{2}=T_{2}P_{1}V_{1}
모든 변수 항이 왼쪽에 오도록 위치를 바꿉니다.
T_{1}V_{2}P_{2}=P_{1}T_{2}V_{1}
이 수식은 표준 형식입니다.
\frac{T_{1}V_{2}P_{2}}{T_{1}V_{2}}=\frac{P_{1}T_{2}V_{1}}{T_{1}V_{2}}
양쪽을 T_{1}V_{2}(으)로 나눕니다.
P_{2}=\frac{P_{1}T_{2}V_{1}}{T_{1}V_{2}}
T_{1}V_{2}(으)로 나누면 T_{1}V_{2}(으)로 곱하기가 원상태로 돌아갑니다.
T_{2}P_{1}V_{1}=T_{1}P_{2}V_{2}
수식의 양쪽을 T_{1},T_{2}의 최소 공통 배수인 T_{1}T_{2}(으)로 곱합니다.
P_{1}T_{2}V_{1}=P_{2}T_{1}V_{2}
항의 순서를 재정렬합니다.
T_{2}V_{1}P_{1}=P_{2}T_{1}V_{2}
이 수식은 표준 형식입니다.
\frac{T_{2}V_{1}P_{1}}{T_{2}V_{1}}=\frac{P_{2}T_{1}V_{2}}{T_{2}V_{1}}
양쪽을 T_{2}V_{1}(으)로 나눕니다.
P_{1}=\frac{P_{2}T_{1}V_{2}}{T_{2}V_{1}}
T_{2}V_{1}(으)로 나누면 T_{2}V_{1}(으)로 곱하기가 원상태로 돌아갑니다.
T_{2}P_{1}V_{1}=T_{1}P_{2}V_{2}
수식의 양쪽을 T_{1},T_{2}의 최소 공통 배수인 T_{1}T_{2}(으)로 곱합니다.
T_{1}P_{2}V_{2}=T_{2}P_{1}V_{1}
모든 변수 항이 왼쪽에 오도록 위치를 바꿉니다.
T_{1}V_{2}P_{2}=P_{1}T_{2}V_{1}
이 수식은 표준 형식입니다.
\frac{T_{1}V_{2}P_{2}}{T_{1}V_{2}}=\frac{P_{1}T_{2}V_{1}}{T_{1}V_{2}}
양쪽을 T_{1}V_{2}(으)로 나눕니다.
P_{2}=\frac{P_{1}T_{2}V_{1}}{T_{1}V_{2}}
T_{1}V_{2}(으)로 나누면 T_{1}V_{2}(으)로 곱하기가 원상태로 돌아갑니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}