계산
\frac{x}{4\left(x+1\right)}
x 관련 미분
\frac{1}{4\left(x+1\right)^{2}}
그래프
공유
클립보드에 복사됨
\frac{8x^{2}}{32x\left(x+1\right)}
인수 분해되지 않은 식을 인수 분해합니다.
\frac{x}{4\left(x+1\right)}
분자와 분모 모두에서 8x을(를) 상쇄합니다.
\frac{x}{4x+4}
식을 확장합니다.
\frac{\left(32x^{2}+32x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(8x^{2})-8x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(32x^{2}+32x^{1})}{\left(32x^{2}+32x^{1}\right)^{2}}
임의의 두 미분 함수에 대해, 두 함수의 몫의 미분 계수는 분모와 분자의 미분 계수를 곱한 값에서 분자와 분모의 미분 계수를 곱한 값을 빼고 모두를 제곱 분모로 나눈 값입니다.
\frac{\left(32x^{2}+32x^{1}\right)\times 2\times 8x^{2-1}-8x^{2}\left(2\times 32x^{2-1}+32x^{1-1}\right)}{\left(32x^{2}+32x^{1}\right)^{2}}
다항식의 미분 계수는 해당 항의 미분 계수의 합입니다. 상수 항의 미분 계수는 0입니다. ax^{n}의 미분 계수는 nax^{n-1}입니다.
\frac{\left(32x^{2}+32x^{1}\right)\times 16x^{1}-8x^{2}\left(64x^{1}+32x^{0}\right)}{\left(32x^{2}+32x^{1}\right)^{2}}
단순화합니다.
\frac{32x^{2}\times 16x^{1}+32x^{1}\times 16x^{1}-8x^{2}\left(64x^{1}+32x^{0}\right)}{\left(32x^{2}+32x^{1}\right)^{2}}
32x^{2}+32x^{1}에 16x^{1}을(를) 곱합니다.
\frac{32x^{2}\times 16x^{1}+32x^{1}\times 16x^{1}-\left(8x^{2}\times 64x^{1}+8x^{2}\times 32x^{0}\right)}{\left(32x^{2}+32x^{1}\right)^{2}}
8x^{2}에 64x^{1}+32x^{0}을(를) 곱합니다.
\frac{32\times 16x^{2+1}+32\times 16x^{1+1}-\left(8\times 64x^{2+1}+8\times 32x^{2}\right)}{\left(32x^{2}+32x^{1}\right)^{2}}
같은 기수의 제곱을 곱하려면 해당 지수를 더합니다.
\frac{512x^{3}+512x^{2}-\left(512x^{3}+256x^{2}\right)}{\left(32x^{2}+32x^{1}\right)^{2}}
단순화합니다.
\frac{256x^{2}}{\left(32x^{2}+32x^{1}\right)^{2}}
동류항을 결합합니다.
\frac{256x^{2}}{\left(32x^{2}+32x\right)^{2}}
모든 항 t에 대해, t^{1}=t.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}