기본 콘텐츠로 건너뛰기
계산
Tick mark Image
x 관련 미분
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

\frac{24}{x^{2}-4x+3}-\frac{3}{3-x}-\frac{4}{x-1}
4과(와) 6을(를) 곱하여 24(을)를 구합니다.
\frac{24}{\left(x-3\right)\left(x-1\right)}-\frac{3}{3-x}-\frac{4}{x-1}
x^{2}-4x+3을(를) 인수 분해합니다.
\frac{24}{\left(x-3\right)\left(x-1\right)}-\frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
식을 더하거나 빼려면 해당 식의 분모를 동일하게 맞추세요. \left(x-3\right)\left(x-1\right)과(와) 3-x의 최소 공배수는 \left(x-3\right)\left(x-1\right)입니다. \frac{3}{3-x}에 \frac{-\left(x-1\right)}{-\left(x-1\right)}을(를) 곱합니다.
\frac{24-3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
\frac{24}{\left(x-3\right)\left(x-1\right)} 및 \frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}의 분모가 같으므로 분자를 빼서 이 둘을 뺍니다.
\frac{24+3x-3}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
24-3\left(-1\right)\left(x-1\right)에서 곱하기를 합니다.
\frac{21+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
24+3x-3의 동류항을 결합합니다.
\frac{21+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}
식을 더하거나 빼려면 해당 식의 분모를 동일하게 맞추세요. \left(x-3\right)\left(x-1\right)과(와) x-1의 최소 공배수는 \left(x-3\right)\left(x-1\right)입니다. \frac{4}{x-1}에 \frac{x-3}{x-3}을(를) 곱합니다.
\frac{21+3x-4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}
\frac{21+3x}{\left(x-3\right)\left(x-1\right)} 및 \frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}의 분모가 같으므로 분자를 빼서 이 둘을 뺍니다.
\frac{21+3x-4x+12}{\left(x-3\right)\left(x-1\right)}
21+3x-4\left(x-3\right)에서 곱하기를 합니다.
\frac{33-x}{\left(x-3\right)\left(x-1\right)}
21+3x-4x+12의 동류항을 결합합니다.
\frac{33-x}{x^{2}-4x+3}
\left(x-3\right)\left(x-1\right)을(를) 전개합니다.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24}{x^{2}-4x+3}-\frac{3}{3-x}-\frac{4}{x-1})
4과(와) 6을(를) 곱하여 24(을)를 구합니다.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24}{\left(x-3\right)\left(x-1\right)}-\frac{3}{3-x}-\frac{4}{x-1})
x^{2}-4x+3을(를) 인수 분해합니다.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24}{\left(x-3\right)\left(x-1\right)}-\frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1})
식을 더하거나 빼려면 해당 식의 분모를 동일하게 맞추세요. \left(x-3\right)\left(x-1\right)과(와) 3-x의 최소 공배수는 \left(x-3\right)\left(x-1\right)입니다. \frac{3}{3-x}에 \frac{-\left(x-1\right)}{-\left(x-1\right)}을(를) 곱합니다.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24-3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1})
\frac{24}{\left(x-3\right)\left(x-1\right)} 및 \frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}의 분모가 같으므로 분자를 빼서 이 둘을 뺍니다.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24+3x-3}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1})
24-3\left(-1\right)\left(x-1\right)에서 곱하기를 합니다.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{21+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1})
24+3x-3의 동류항을 결합합니다.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{21+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)})
식을 더하거나 빼려면 해당 식의 분모를 동일하게 맞추세요. \left(x-3\right)\left(x-1\right)과(와) x-1의 최소 공배수는 \left(x-3\right)\left(x-1\right)입니다. \frac{4}{x-1}에 \frac{x-3}{x-3}을(를) 곱합니다.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{21+3x-4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)})
\frac{21+3x}{\left(x-3\right)\left(x-1\right)} 및 \frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}의 분모가 같으므로 분자를 빼서 이 둘을 뺍니다.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{21+3x-4x+12}{\left(x-3\right)\left(x-1\right)})
21+3x-4\left(x-3\right)에서 곱하기를 합니다.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{33-x}{\left(x-3\right)\left(x-1\right)})
21+3x-4x+12의 동류항을 결합합니다.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{33-x}{x^{2}-4x+3})
분배 법칙을 사용하여 x-3에 x-1(을)를 곱하고 동류항을 결합합니다.
\frac{\left(x^{2}-4x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}+33)-\left(-x^{1}+33\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4x^{1}+3)}{\left(x^{2}-4x^{1}+3\right)^{2}}
임의의 두 미분 함수에 대해, 두 함수의 몫의 미분 계수는 분모와 분자의 미분 계수를 곱한 값에서 분자와 분모의 미분 계수를 곱한 값을 빼고 모두를 제곱 분모로 나눈 값입니다.
\frac{\left(x^{2}-4x^{1}+3\right)\left(-1\right)x^{1-1}-\left(-x^{1}+33\right)\left(2x^{2-1}-4x^{1-1}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
다항식의 미분 계수는 해당 항의 미분 계수의 합입니다. 상수 항의 미분 계수는 0입니다. ax^{n}의 미분 계수는 nax^{n-1}입니다.
\frac{\left(x^{2}-4x^{1}+3\right)\left(-1\right)x^{0}-\left(-x^{1}+33\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
단순화합니다.
\frac{x^{2}\left(-1\right)x^{0}-4x^{1}\left(-1\right)x^{0}+3\left(-1\right)x^{0}-\left(-x^{1}+33\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
x^{2}-4x^{1}+3에 -x^{0}을(를) 곱합니다.
\frac{x^{2}\left(-1\right)x^{0}-4x^{1}\left(-1\right)x^{0}+3\left(-1\right)x^{0}-\left(-x^{1}\times 2x^{1}-x^{1}\left(-4\right)x^{0}+33\times 2x^{1}+33\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
-x^{1}+33에 2x^{1}-4x^{0}을(를) 곱합니다.
\frac{-x^{2}-4\left(-1\right)x^{1}+3\left(-1\right)x^{0}-\left(-2x^{1+1}-\left(-4x^{1}\right)+33\times 2x^{1}+33\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
같은 기수의 제곱을 곱하려면 해당 지수를 더합니다.
\frac{-x^{2}+4x^{1}-3x^{0}-\left(-2x^{2}+4x^{1}+66x^{1}-132x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
단순화합니다.
\frac{x^{2}-66x^{1}+129x^{0}}{\left(x^{2}-4x^{1}+3\right)^{2}}
동류항을 결합합니다.
\frac{x^{2}-66x+129x^{0}}{\left(x^{2}-4x+3\right)^{2}}
모든 항 t에 대해, t^{1}=t.
\frac{x^{2}-66x+129\times 1}{\left(x^{2}-4x+3\right)^{2}}
0 이외의 모든 항 t에 대해, t^{0}=1.
\frac{x^{2}-66x+129}{\left(x^{2}-4x+3\right)^{2}}
모든 항 t에 대해, t\times 1=t 및 1t=t.