a에 대한 해
a=1-x
x\neq -1
x에 대한 해
x=1-a
a\neq 2
그래프
공유
클립보드에 복사됨
2x+a=x+1
수식의 양쪽 모두에 x+1을(를) 곱합니다.
a=x+1-2x
양쪽 모두에서 2x을(를) 뺍니다.
a=-x+1
x과(와) -2x을(를) 결합하여 -x(을)를 구합니다.
2x+a=x+1
0으로 나누기가 정의되지 않았으므로 x 변수는 -1과(와) 같을 수 없습니다. 수식의 양쪽 모두에 x+1을(를) 곱합니다.
2x+a-x=1
양쪽 모두에서 x을(를) 뺍니다.
x+a=1
2x과(와) -x을(를) 결합하여 x(을)를 구합니다.
x=1-a
양쪽 모두에서 a을(를) 뺍니다.
x=1-a\text{, }x\neq -1
x 변수는 -1과(와) 같을 수 없습니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}