기본 콘텐츠로 건너뛰기
v 관련 미분
Tick mark Image
계산
Tick mark Image

비슷한 문제의 웹 검색 결과

공유

\frac{\left(3v^{1}-9\right)\frac{\mathrm{d}}{\mathrm{d}v}(2v^{1})-2v^{1}\frac{\mathrm{d}}{\mathrm{d}v}(3v^{1}-9)}{\left(3v^{1}-9\right)^{2}}
임의의 두 미분 함수에 대해, 두 함수의 몫의 미분 계수는 분모와 분자의 미분 계수를 곱한 값에서 분자와 분모의 미분 계수를 곱한 값을 빼고 모두를 제곱 분모로 나눈 값입니다.
\frac{\left(3v^{1}-9\right)\times 2v^{1-1}-2v^{1}\times 3v^{1-1}}{\left(3v^{1}-9\right)^{2}}
다항식의 미분 계수는 해당 항의 미분 계수의 합입니다. 상수 항의 미분 계수는 0입니다. ax^{n}의 미분 계수는 nax^{n-1}입니다.
\frac{\left(3v^{1}-9\right)\times 2v^{0}-2v^{1}\times 3v^{0}}{\left(3v^{1}-9\right)^{2}}
산술 연산을 수행합니다.
\frac{3v^{1}\times 2v^{0}-9\times 2v^{0}-2v^{1}\times 3v^{0}}{\left(3v^{1}-9\right)^{2}}
분배 법칙을 사용하여 전개합니다.
\frac{3\times 2v^{1}-9\times 2v^{0}-2\times 3v^{1}}{\left(3v^{1}-9\right)^{2}}
같은 기수의 제곱을 곱하려면 해당 지수를 더합니다.
\frac{6v^{1}-18v^{0}-6v^{1}}{\left(3v^{1}-9\right)^{2}}
산술 연산을 수행합니다.
\frac{\left(6-6\right)v^{1}-18v^{0}}{\left(3v^{1}-9\right)^{2}}
동류항을 결합합니다.
\frac{-18v^{0}}{\left(3v^{1}-9\right)^{2}}
6에서 6을(를) 뺍니다.
\frac{-18v^{0}}{\left(3v-9\right)^{2}}
모든 항 t에 대해, t^{1}=t.
\frac{-18}{\left(3v-9\right)^{2}}
0 이외의 모든 항 t에 대해, t^{0}=1.