기본 콘텐츠로 건너뛰기
x에 대한 해
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

\left(x-1\right)\times 2+x+1=\left(x-1\right)\left(x+1\right)
0으로 나누기가 정의되지 않았으므로 x 변수는 값 -1,1 중 하나와 같을 수 없습니다. 수식의 양쪽을 x+1,x-1의 최소 공통 배수인 \left(x-1\right)\left(x+1\right)(으)로 곱합니다.
2x-2+x+1=\left(x-1\right)\left(x+1\right)
분배 법칙을 사용하여 x-1에 2(을)를 곱합니다.
3x-2+1=\left(x-1\right)\left(x+1\right)
2x과(와) x을(를) 결합하여 3x(을)를 구합니다.
3x-1=\left(x-1\right)\left(x+1\right)
-2과(와) 1을(를) 더하여 -1을(를) 구합니다.
3x-1=x^{2}-1
\left(x-1\right)\left(x+1\right)을(를) 고려하세요. 곱하기는 \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} 규칙을 사용하여 제곱의 차로 변환할 수 있습니다. 1을(를) 제곱합니다.
3x-1-x^{2}=-1
양쪽 모두에서 x^{2}을(를) 뺍니다.
3x-1-x^{2}+1=0
양쪽에 1을(를) 더합니다.
3x-x^{2}=0
-1과(와) 1을(를) 더하여 0을(를) 구합니다.
-x^{2}+3x=0
ax^{2}+bx+c=0 형식의 모든 수식은 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}를 사용하여 해답을 찾을 수 있습니다. 근의 공식은 두 가지 해답을 제공하는데, 하나는 ±가 더하기일 때고 다른 하나는 빼기일 때입니다.
x=\frac{-3±\sqrt{3^{2}}}{2\left(-1\right)}
이 수식은 표준 형식 ax^{2}+bx+c=0입니다. 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}에서 -1을(를) a로, 3을(를) b로, 0을(를) c로 치환합니다.
x=\frac{-3±3}{2\left(-1\right)}
3^{2}의 제곱근을 구합니다.
x=\frac{-3±3}{-2}
2에 -1을(를) 곱합니다.
x=\frac{0}{-2}
±이(가) 플러스일 때 수식 x=\frac{-3±3}{-2}을(를) 풉니다. -3을(를) 3에 추가합니다.
x=0
0을(를) -2(으)로 나눕니다.
x=-\frac{6}{-2}
±이(가) 마이너스일 때 수식 x=\frac{-3±3}{-2}을(를) 풉니다. -3에서 3을(를) 뺍니다.
x=3
-6을(를) -2(으)로 나눕니다.
x=0 x=3
수식이 이제 해결되었습니다.
\left(x-1\right)\times 2+x+1=\left(x-1\right)\left(x+1\right)
0으로 나누기가 정의되지 않았으므로 x 변수는 값 -1,1 중 하나와 같을 수 없습니다. 수식의 양쪽을 x+1,x-1의 최소 공통 배수인 \left(x-1\right)\left(x+1\right)(으)로 곱합니다.
2x-2+x+1=\left(x-1\right)\left(x+1\right)
분배 법칙을 사용하여 x-1에 2(을)를 곱합니다.
3x-2+1=\left(x-1\right)\left(x+1\right)
2x과(와) x을(를) 결합하여 3x(을)를 구합니다.
3x-1=\left(x-1\right)\left(x+1\right)
-2과(와) 1을(를) 더하여 -1을(를) 구합니다.
3x-1=x^{2}-1
\left(x-1\right)\left(x+1\right)을(를) 고려하세요. 곱하기는 \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} 규칙을 사용하여 제곱의 차로 변환할 수 있습니다. 1을(를) 제곱합니다.
3x-1-x^{2}=-1
양쪽 모두에서 x^{2}을(를) 뺍니다.
3x-x^{2}=-1+1
양쪽에 1을(를) 더합니다.
3x-x^{2}=0
-1과(와) 1을(를) 더하여 0을(를) 구합니다.
-x^{2}+3x=0
이와 같은 근의 공식은 제곱을 완성하여 해를 구할 수 있습니다. 제곱을 완성하려면 먼저 수식이 x^{2}+bx=c 형식이어야 합니다.
\frac{-x^{2}+3x}{-1}=\frac{0}{-1}
양쪽을 -1(으)로 나눕니다.
x^{2}+\frac{3}{-1}x=\frac{0}{-1}
-1(으)로 나누면 -1(으)로 곱하기가 원상태로 돌아갑니다.
x^{2}-3x=\frac{0}{-1}
3을(를) -1(으)로 나눕니다.
x^{2}-3x=0
0을(를) -1(으)로 나눕니다.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
x 항의 계수인 -3을(를) 2(으)로 나눠서 -\frac{3}{2}을(를) 구합니다. 그런 다음 -\frac{3}{2}의 제곱을 수식의 양쪽에 더합니다. 이 단계를 수행하면 수식의 왼쪽이 완전 제곱이 됩니다.
x^{2}-3x+\frac{9}{4}=\frac{9}{4}
분수의 분자와 분모를 모두 제곱하여 -\frac{3}{2}을(를) 제곱합니다.
\left(x-\frac{3}{2}\right)^{2}=\frac{9}{4}
인수 x^{2}-3x+\frac{9}{4}. 일반적으로 x^{2}+bx+c 완벽한 제곱인 경우 항상 \left(x+\frac{b}{2}\right)^{2} 인수로 지정할 수 있습니다.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
수식 양쪽의 제곱근을 구합니다.
x-\frac{3}{2}=\frac{3}{2} x-\frac{3}{2}=-\frac{3}{2}
단순화합니다.
x=3 x=0
수식의 양쪽에 \frac{3}{2}을(를) 더합니다.