계산
\frac{x^{2}}{3}
확장
\frac{x^{2}}{3}
그래프
공유
클립보드에 복사됨
\frac{x^{2}+7x+12}{\left(x+1\right)\left(x-1\right)}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
분배 법칙을 사용하여 x+3에 x+4(을)를 곱하고 동류항을 결합합니다.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
\left(x+1\right)\left(x-1\right)을(를) 고려하세요. 곱하기는 \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} 규칙을 사용하여 제곱의 차로 변환할 수 있습니다. 1을(를) 제곱합니다.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3\left(x+3\right)}
분배 법칙을 사용하여 x^{2}에 1+x(을)를 곱합니다.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3x+9}
분배 법칙을 사용하여 3에 x+3(을)를 곱합니다.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)}\times \frac{x-1}{3x+9}
분자는 분자끼리 분모는 분모끼리 곱하여 \frac{x^{2}+7x+12}{x^{2}-1}에 \frac{x^{2}+x^{3}}{x+4}을(를) 곱합니다.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)\left(x-1\right)}{\left(x^{2}-1\right)\left(x+4\right)\left(3x+9\right)}
분자는 분자끼리 분모는 분모끼리 곱하여 \frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)}에 \frac{x-1}{3x+9}을(를) 곱합니다.
\frac{\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)x^{2}}{3\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)}
인수 분해되지 않은 식을 인수 분해합니다.
\frac{x^{2}}{3}
분자와 분모 모두에서 \left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)을(를) 상쇄합니다.
\frac{x^{2}+7x+12}{\left(x+1\right)\left(x-1\right)}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
분배 법칙을 사용하여 x+3에 x+4(을)를 곱하고 동류항을 결합합니다.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
\left(x+1\right)\left(x-1\right)을(를) 고려하세요. 곱하기는 \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} 규칙을 사용하여 제곱의 차로 변환할 수 있습니다. 1을(를) 제곱합니다.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3\left(x+3\right)}
분배 법칙을 사용하여 x^{2}에 1+x(을)를 곱합니다.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3x+9}
분배 법칙을 사용하여 3에 x+3(을)를 곱합니다.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)}\times \frac{x-1}{3x+9}
분자는 분자끼리 분모는 분모끼리 곱하여 \frac{x^{2}+7x+12}{x^{2}-1}에 \frac{x^{2}+x^{3}}{x+4}을(를) 곱합니다.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)\left(x-1\right)}{\left(x^{2}-1\right)\left(x+4\right)\left(3x+9\right)}
분자는 분자끼리 분모는 분모끼리 곱하여 \frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)}에 \frac{x-1}{3x+9}을(를) 곱합니다.
\frac{\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)x^{2}}{3\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)}
인수 분해되지 않은 식을 인수 분해합니다.
\frac{x^{2}}{3}
분자와 분모 모두에서 \left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)을(를) 상쇄합니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}