계산
-x+4-\frac{4}{x}+\frac{5}{x^{2}}-\frac{1}{x^{3}}
확장
-x+4-\frac{4}{x}+\frac{5}{x^{2}}-\frac{1}{x^{3}}
그래프
공유
클립보드에 복사됨
\frac{\left(\frac{2x}{x}+\frac{1}{x}\right)^{2}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
식을 더하거나 빼려면 해당 식의 분모를 동일하게 맞추세요. 2에 \frac{x}{x}을(를) 곱합니다.
\frac{\left(\frac{2x+1}{x}\right)^{2}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{2x}{x} 및 \frac{1}{x}의 분모가 같으므로 분자를 더하여 이 둘을 더합니다.
\frac{\frac{\left(2x+1\right)^{2}}{x^{2}}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{2x+1}{x}을(를) 제곱하려면 분자와 분모를 모두 제곱한 다음 나누세요.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{\frac{\left(2x+1\right)^{2}}{x^{2}}}{1+x}을(를) 단일 분수로 표현합니다.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(\frac{x}{x}-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
식을 더하거나 빼려면 해당 식의 분모를 동일하게 맞추세요. 1에 \frac{x}{x}을(를) 곱합니다.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(\frac{x-1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{x}{x} 및 \frac{1}{x}의 분모가 같으므로 분자를 빼서 이 둘을 뺍니다.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{x-1}{x}을(를) 제곱하려면 분자와 분모를 모두 제곱한 다음 나누세요.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\left(\frac{\left(x-2\right)x}{x}+\frac{1}{x}\right)-\frac{2x+1}{x^{2}+x}
식을 더하거나 빼려면 해당 식의 분모를 동일하게 맞추세요. x-2에 \frac{x}{x}을(를) 곱합니다.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\times \frac{\left(x-2\right)x+1}{x}-\frac{2x+1}{x^{2}+x}
\frac{\left(x-2\right)x}{x} 및 \frac{1}{x}의 분모가 같으므로 분자를 더하여 이 둘을 더합니다.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\times \frac{x^{2}-2x+1}{x}-\frac{2x+1}{x^{2}+x}
\left(x-2\right)x+1에서 곱하기를 합니다.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{2}x}-\frac{2x+1}{x^{2}+x}
분자는 분자끼리 분모는 분모끼리 곱하여 \frac{\left(x-1\right)^{2}}{x^{2}}에 \frac{x^{2}-2x+1}{x}을(를) 곱합니다.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{3}}-\frac{2x+1}{x^{2}+x}
같은 기수의 제곱을 곱하려면 해당 지수를 더합니다. 2과(와) 1을(를) 더하여 3을(를) 구합니다.
\frac{\left(2x+1\right)^{2}x}{\left(x+1\right)x^{3}}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
식을 더하거나 빼려면 해당 식의 분모를 동일하게 맞추세요. x^{2}\left(1+x\right)과(와) x^{3}의 최소 공배수는 \left(x+1\right)x^{3}입니다. \frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}에 \frac{x}{x}을(를) 곱합니다. \frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{3}}에 \frac{x+1}{x+1}을(를) 곱합니다.
\frac{\left(2x+1\right)^{2}x-\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
\frac{\left(2x+1\right)^{2}x}{\left(x+1\right)x^{3}} 및 \frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}}의 분모가 같으므로 분자를 빼서 이 둘을 뺍니다.
\frac{4x^{3}+4x^{2}+x-x^{5}+x^{4}+x^{3}-x^{2}+2x^{4}-2x^{3}-2x^{2}+2x-x^{3}+x^{2}+x-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
\left(2x+1\right)^{2}x-\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)에서 곱하기를 합니다.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
4x^{3}+4x^{2}+x-x^{5}+x^{4}+x^{3}-x^{2}+2x^{4}-2x^{3}-2x^{2}+2x-x^{3}+x^{2}+x-1의 동류항을 결합합니다.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x\left(x+1\right)}
x^{2}+x을(를) 인수 분해합니다.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}}
식을 더하거나 빼려면 해당 식의 분모를 동일하게 맞추세요. \left(x+1\right)x^{3}과(와) x\left(x+1\right)의 최소 공배수는 \left(x+1\right)x^{3}입니다. \frac{2x+1}{x\left(x+1\right)}에 \frac{x^{2}}{x^{2}}을(를) 곱합니다.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}}
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}} 및 \frac{\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}}의 분모가 같으므로 분자를 빼서 이 둘을 뺍니다.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-2x^{3}-x^{2}}{\left(x+1\right)x^{3}}
2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-\left(2x+1\right)x^{2}에서 곱하기를 합니다.
\frac{x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}
2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-2x^{3}-x^{2}의 동류항을 결합합니다.
\frac{\left(x+1\right)\left(-x^{4}+4x^{3}-4x^{2}+5x-1\right)}{\left(x+1\right)x^{3}}
\frac{x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}에서 인수 분해되지 않은 식을 인수 분해합니다.
\frac{-x^{4}+4x^{3}-4x^{2}+5x-1}{x^{3}}
분자와 분모 모두에서 x+1을(를) 상쇄합니다.
\frac{\left(\frac{2x}{x}+\frac{1}{x}\right)^{2}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
식을 더하거나 빼려면 해당 식의 분모를 동일하게 맞추세요. 2에 \frac{x}{x}을(를) 곱합니다.
\frac{\left(\frac{2x+1}{x}\right)^{2}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{2x}{x} 및 \frac{1}{x}의 분모가 같으므로 분자를 더하여 이 둘을 더합니다.
\frac{\frac{\left(2x+1\right)^{2}}{x^{2}}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{2x+1}{x}을(를) 제곱하려면 분자와 분모를 모두 제곱한 다음 나누세요.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{\frac{\left(2x+1\right)^{2}}{x^{2}}}{1+x}을(를) 단일 분수로 표현합니다.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(\frac{x}{x}-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
식을 더하거나 빼려면 해당 식의 분모를 동일하게 맞추세요. 1에 \frac{x}{x}을(를) 곱합니다.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(\frac{x-1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{x}{x} 및 \frac{1}{x}의 분모가 같으므로 분자를 빼서 이 둘을 뺍니다.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{x-1}{x}을(를) 제곱하려면 분자와 분모를 모두 제곱한 다음 나누세요.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\left(\frac{\left(x-2\right)x}{x}+\frac{1}{x}\right)-\frac{2x+1}{x^{2}+x}
식을 더하거나 빼려면 해당 식의 분모를 동일하게 맞추세요. x-2에 \frac{x}{x}을(를) 곱합니다.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\times \frac{\left(x-2\right)x+1}{x}-\frac{2x+1}{x^{2}+x}
\frac{\left(x-2\right)x}{x} 및 \frac{1}{x}의 분모가 같으므로 분자를 더하여 이 둘을 더합니다.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\times \frac{x^{2}-2x+1}{x}-\frac{2x+1}{x^{2}+x}
\left(x-2\right)x+1에서 곱하기를 합니다.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{2}x}-\frac{2x+1}{x^{2}+x}
분자는 분자끼리 분모는 분모끼리 곱하여 \frac{\left(x-1\right)^{2}}{x^{2}}에 \frac{x^{2}-2x+1}{x}을(를) 곱합니다.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{3}}-\frac{2x+1}{x^{2}+x}
같은 기수의 제곱을 곱하려면 해당 지수를 더합니다. 2과(와) 1을(를) 더하여 3을(를) 구합니다.
\frac{\left(2x+1\right)^{2}x}{\left(x+1\right)x^{3}}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
식을 더하거나 빼려면 해당 식의 분모를 동일하게 맞추세요. x^{2}\left(1+x\right)과(와) x^{3}의 최소 공배수는 \left(x+1\right)x^{3}입니다. \frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}에 \frac{x}{x}을(를) 곱합니다. \frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{3}}에 \frac{x+1}{x+1}을(를) 곱합니다.
\frac{\left(2x+1\right)^{2}x-\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
\frac{\left(2x+1\right)^{2}x}{\left(x+1\right)x^{3}} 및 \frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}}의 분모가 같으므로 분자를 빼서 이 둘을 뺍니다.
\frac{4x^{3}+4x^{2}+x-x^{5}+x^{4}+x^{3}-x^{2}+2x^{4}-2x^{3}-2x^{2}+2x-x^{3}+x^{2}+x-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
\left(2x+1\right)^{2}x-\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)에서 곱하기를 합니다.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
4x^{3}+4x^{2}+x-x^{5}+x^{4}+x^{3}-x^{2}+2x^{4}-2x^{3}-2x^{2}+2x-x^{3}+x^{2}+x-1의 동류항을 결합합니다.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x\left(x+1\right)}
x^{2}+x을(를) 인수 분해합니다.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}}
식을 더하거나 빼려면 해당 식의 분모를 동일하게 맞추세요. \left(x+1\right)x^{3}과(와) x\left(x+1\right)의 최소 공배수는 \left(x+1\right)x^{3}입니다. \frac{2x+1}{x\left(x+1\right)}에 \frac{x^{2}}{x^{2}}을(를) 곱합니다.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}}
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}} 및 \frac{\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}}의 분모가 같으므로 분자를 빼서 이 둘을 뺍니다.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-2x^{3}-x^{2}}{\left(x+1\right)x^{3}}
2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-\left(2x+1\right)x^{2}에서 곱하기를 합니다.
\frac{x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}
2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-2x^{3}-x^{2}의 동류항을 결합합니다.
\frac{\left(x+1\right)\left(-x^{4}+4x^{3}-4x^{2}+5x-1\right)}{\left(x+1\right)x^{3}}
\frac{x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}에서 인수 분해되지 않은 식을 인수 분해합니다.
\frac{-x^{4}+4x^{3}-4x^{2}+5x-1}{x^{3}}
분자와 분모 모두에서 x+1을(를) 상쇄합니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}