α 관련 미분
-\sin(\alpha )
계산
\cos(\alpha )
공유
클립보드에 복사됨
\frac{\mathrm{d}}{\mathrm{d}\alpha }(\cos(\alpha ))=\left(\lim_{h\to 0}\frac{\cos(\alpha +h)-\cos(\alpha )}{h}\right)
함수 f\left(x\right)의 경우 미분 계수는 h가 0으로 변할 때 \frac{f\left(x+h\right)-f\left(x\right)}{h}의 극한(해당 극한이 있는 경우)입니다.
\lim_{h\to 0}\frac{\cos(h+\alpha )-\cos(\alpha )}{h}
코사인의 합 공식을 사용합니다.
\lim_{h\to 0}\frac{\cos(\alpha )\left(\cos(h)-1\right)-\sin(\alpha )\sin(h)}{h}
\cos(\alpha )을(를) 인수 분해합니다.
\left(\lim_{h\to 0}\cos(\alpha )\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\left(\lim_{h\to 0}\sin(\alpha )\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
극한을 다시 작성합니다.
\cos(\alpha )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(\alpha )\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
h이(가) 0으(로) 변할 때의 극한을 계산할 때 \alpha 은(는) 상수라는 사실을 이용합니다.
\cos(\alpha )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(\alpha )
극한 \lim_{\alpha \to 0}\frac{\sin(\alpha )}{\alpha }은(는) 1입니다.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
극한 \lim_{h\to 0}\frac{\cos(h)-1}{h}의 값을 계산하려면 먼저 분자와 분모에 \cos(h)+1을(를) 곱합니다.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
\cos(h)+1에 \cos(h)-1을(를) 곱합니다.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
삼각함수 제곱 공식을 사용합니다.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
극한을 다시 작성합니다.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
극한 \lim_{\alpha \to 0}\frac{\sin(\alpha )}{\alpha }은(는) 1입니다.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
\frac{\sin(h)}{\cos(h)+1}은(는) 0에서 연속된다는 사실을 이용합니다.
-\sin(\alpha )
값 0을(를) 식 \cos(\alpha )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(\alpha )(으)로 치환합니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}