z мәнін табыңыз
z = \frac{\sqrt{5} + 3}{2} \approx 2.618033989
z=\frac{3-\sqrt{5}}{2}\approx 0.381966011
Ортақ пайдалану
Алмасу буферіне көшірілген
z^{2}-3z+1=0
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
z=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4}}{2}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 1 санын a мәніне, -3 санын b мәніне және 1 санын c мәніне ауыстырыңыз.
z=\frac{-\left(-3\right)±\sqrt{9-4}}{2}
-3 санының квадратын шығарыңыз.
z=\frac{-\left(-3\right)±\sqrt{5}}{2}
9 санын -4 санына қосу.
z=\frac{3±\sqrt{5}}{2}
-3 санына қарама-қарсы сан 3 мәніне тең.
z=\frac{\sqrt{5}+3}{2}
Енді ± плюс болған кездегі z=\frac{3±\sqrt{5}}{2} теңдеуін шешіңіз. 3 санын \sqrt{5} санына қосу.
z=\frac{3-\sqrt{5}}{2}
Енді ± минус болған кездегі z=\frac{3±\sqrt{5}}{2} теңдеуін шешіңіз. \sqrt{5} мәнінен 3 мәнін алу.
z=\frac{\sqrt{5}+3}{2} z=\frac{3-\sqrt{5}}{2}
Теңдеу енді шешілді.
z^{2}-3z+1=0
Осыған ұқсас квадрат теңдеулерді толық квадратқа дейін толтыру арқылы шешуге болады. Толық квадратқа дейін толтыру үшін, теңдеуді алдымен x^{2}+bx=c формуласына қою қажет.
z^{2}-3z+1-1=-1
Теңдеудің екі жағынан 1 санын алып тастаңыз.
z^{2}-3z=-1
1 санынан осы санның өзін алып тастаған кезде 0 қалады.
z^{2}-3z+\left(-\frac{3}{2}\right)^{2}=-1+\left(-\frac{3}{2}\right)^{2}
x бос мүшесінің коэффициенті болып табылатын -3 санын 2 мәніне бөлсеңіз, -\frac{3}{2} саны шығады. Содан соң, теңдеудің екі жағына -\frac{3}{2} квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
z^{2}-3z+\frac{9}{4}=-1+\frac{9}{4}
Бөлшектің алымы мен бөлімінің квадратын шығару арқылы -\frac{3}{2} бөлшегінің квадратын табыңыз.
z^{2}-3z+\frac{9}{4}=\frac{5}{4}
-1 санын \frac{9}{4} санына қосу.
\left(z-\frac{3}{2}\right)^{2}=\frac{5}{4}
z^{2}-3z+\frac{9}{4} көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(z-\frac{3}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
z-\frac{3}{2}=\frac{\sqrt{5}}{2} z-\frac{3}{2}=-\frac{\sqrt{5}}{2}
Қысқартыңыз.
z=\frac{\sqrt{5}+3}{2} z=\frac{3-\sqrt{5}}{2}
Теңдеудің екі жағына да \frac{3}{2} санын қосыңыз.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}