Негізгі мазмұнды өткізіп жіберу
Көбейткіштерге жіктеу
Tick mark Image
Есептеу
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

a+b=-2 ab=1\times 1=1
Өрнекті топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, өрнек y^{2}+ay+by+1 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
a=-1 b=-1
ab оң болғандықтан, a және b белгілері бірдей болады. a+b теріс болғандықтан, a және b мәндері теріс болады. Мұндай жалғыз жұп — бұл жүйе шешімі.
\left(y^{2}-y\right)+\left(-y+1\right)
y^{2}-2y+1 мәнін \left(y^{2}-y\right)+\left(-y+1\right) ретінде қайта жазыңыз.
y\left(y-1\right)-\left(y-1\right)
Бірінші топтағы y ортақ көбейткішін және екінші топтағы -1 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(y-1\right)\left(y-1\right)
Үлестіру сипаты арқылы y-1 ортақ көбейткішін жақша сыртына шығарыңыз.
\left(y-1\right)^{2}
Қос мүшелі шаршы ретінде қайта белгілеңіз.
factor(y^{2}-2y+1)
Үшмүшеде ортақ көбейткішке көбейтілуі мүмкін үшмүше квадратының формуласы бар. Үшмүше квадраттардың көбейткіштерін бас және соңғы мүшелерінің квадрат түбірлерін табу арқылы жіктеуге болады.
\left(y-1\right)^{2}
Үшмүше квадраты қосмүше квадратына тең, яғни, үшмүше квадратының ортаңғы мүше белгісімен анықталған белгісі бар бас және соңғы мүшелердің квадрат түбірлерінің қосындысы немесе айырмасы.
y^{2}-2y+1=0
Квадраттық көпмүшені мына түрлендіру арқылы көбейткіштерге жіктеуге болады: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), мұнда x_{1} және x_{2} — ax^{2}+bx+c=0 квадрат теңдеуінің шешімдері.
y=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4}}{2}
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
y=\frac{-\left(-2\right)±\sqrt{4-4}}{2}
-2 санының квадратын шығарыңыз.
y=\frac{-\left(-2\right)±\sqrt{0}}{2}
4 санын -4 санына қосу.
y=\frac{-\left(-2\right)±0}{2}
0 санының квадраттық түбірін шығарыңыз.
y=\frac{2±0}{2}
-2 санына қарама-қарсы сан 2 мәніне тең.
y^{2}-2y+1=\left(y-1\right)\left(y-1\right)
Бастапқы өрнекті мына формула бойынша көбейткіштерге жіктеңіз: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). x_{1} мәнінің орнына 1 санын, ал x_{2} мәнінің орнына 1 санын қойыңыз.