y мәнін табыңыз (complex solution)
y=\ln(\frac{-\sin(x)+1}{\sin(x)+1})
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}
x мәнін табыңыз
x=\left(-1\right)arcSin(\left(-1+e^{y}\right)\left(1+e^{y}\right)^{-1})+2\pi n_{28}\text{, }n_{28}\in \mathrm{Z}\text{, }\exists n_{9}\in \mathrm{Z}\text{ : }\left(n_{9}<\left(\left(-1\right)arcSin(\left(-1+e^{y}\right)\left(1+e^{y}\right)^{-1})+2\pi n_{28}+\left(-\frac{1}{2}\right)\pi \right)\pi ^{-1}\text{ and }\left(-1\right)arcSin(\left(-1+e^{y}\right)\left(1+e^{y}\right)^{-1})+2\pi n_{28}<\pi \left(n_{9}+\frac{3}{2}\right)\right)\text{ and }\exists n_{9}\in \mathrm{Z}\text{ : }\left(\left(-1\right)arcSin(\left(-1+e^{y}\right)\left(1+e^{y}\right)^{-1})+2\pi n_{28}>\pi n_{9}+\frac{1}{2}\pi \text{ and }\left(-1\right)arcSin(\left(-1+e^{y}\right)\left(1+e^{y}\right)^{-1})+2\pi n_{28}<\pi \left(n_{9}+\frac{3}{2}\right)\right)
x=\pi +2\pi n_{23}+arcSin(\left(-1+e^{y}\right)\left(1+e^{y}\right)^{-1})\text{, }n_{23}\in \mathrm{Z}\text{, }\exists n_{9}\in \mathrm{Z}\text{ : }\left(\pi +2\pi n_{23}+arcSin(\left(-1+e^{y}\right)\left(1+e^{y}\right)^{-1})>\pi n_{9}+\frac{1}{2}\pi \text{ and }\pi +2\pi n_{23}+arcSin(\left(-1+e^{y}\right)\left(1+e^{y}\right)^{-1})<\left(n_{9}+\frac{3}{2}\right)\pi \right)\text{ and }\exists n_{9}\in \mathrm{Z}\text{ : }\left(\pi +2\pi n_{23}+arcSin(\left(-1+e^{y}\right)\left(1+e^{y}\right)^{-1})>\pi n_{9}+\frac{1}{2}\pi \text{ and }\pi +2\pi n_{23}+arcSin(\left(-1+e^{y}\right)\left(1+e^{y}\right)^{-1})<\pi \left(n_{9}+\frac{3}{2}\right)\right)
y мәнін табыңыз
y=\ln(\frac{-\sin(x)+1}{\sin(x)+1})
\exists n_{1}\in \mathrm{Z}\text{ : }\left(x>\pi n_{1}+\frac{\pi }{2}\text{ and }x<\pi n_{1}+\frac{3\pi }{2}\right)
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}