Есептеу
\frac{x^{4}+3x^{3}+1}{x+3}
x қатысты айыру
\frac{3x^{4}+18x^{3}+27x^{2}-1}{\left(x+3\right)^{2}}
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
\frac{x^{3}\left(x+3\right)}{x+3}+\frac{1}{x+3}
Өрнектерді қосу немесе алу үшін, оларды бір бөлімге келтіріңіз. x^{3} санын \frac{x+3}{x+3} санына көбейтіңіз.
\frac{x^{3}\left(x+3\right)+1}{x+3}
\frac{x^{3}\left(x+3\right)}{x+3} және \frac{1}{x+3} бөлшектерінің бөлімі бірдей болғандықтан, олардың алымдарын қосу арқылы қосыңыз.
\frac{x^{4}+3x^{3}+1}{x+3}
x^{3}\left(x+3\right)+1 өрнегінде көбейту операциясын орындаңыз.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}\left(x+3\right)}{x+3}+\frac{1}{x+3})
Өрнектерді қосу немесе алу үшін, оларды бір бөлімге келтіріңіз. x^{3} санын \frac{x+3}{x+3} санына көбейтіңіз.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}\left(x+3\right)+1}{x+3})
\frac{x^{3}\left(x+3\right)}{x+3} және \frac{1}{x+3} бөлшектерінің бөлімі бірдей болғандықтан, олардың алымдарын қосу арқылы қосыңыз.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{4}+3x^{3}+1}{x+3})
x^{3}\left(x+3\right)+1 өрнегінде көбейту операциясын орындаңыз.
\frac{\left(x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}+3x^{3}+1)-\left(x^{4}+3x^{3}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+3)}{\left(x^{1}+3\right)^{2}}
Кез келген екі тегіс функция үшін, екі функция бөлшегінің туындысы бөлімін алымына көбейтіп, одан алымын алып тастап, бөлімінің туындысына көбейткеннен кейін, барлығын квадратталған бөліміне бөлгенге тең.
\frac{\left(x^{1}+3\right)\left(4x^{4-1}+3\times 3x^{3-1}\right)-\left(x^{4}+3x^{3}+1\right)x^{1-1}}{\left(x^{1}+3\right)^{2}}
Көпмүше туындысы оның бос мүшелерінің туындыларының қосындысына тең. Тұрақты мүшенің туындысы 0 мәніне тең. ax^{n} мәнінің туындысы nax^{n-1} мәніне тең.
\frac{\left(x^{1}+3\right)\left(4x^{3}+9x^{2}\right)-\left(x^{4}+3x^{3}+1\right)x^{0}}{\left(x^{1}+3\right)^{2}}
Қысқартыңыз.
\frac{x^{1}\times 4x^{3}+x^{1}\times 9x^{2}+3\times 4x^{3}+3\times 9x^{2}-\left(x^{4}+3x^{3}+1\right)x^{0}}{\left(x^{1}+3\right)^{2}}
x^{1}+3 санын 4x^{3}+9x^{2} санына көбейтіңіз.
\frac{x^{1}\times 4x^{3}+x^{1}\times 9x^{2}+3\times 4x^{3}+3\times 9x^{2}-\left(x^{4}x^{0}+3x^{3}x^{0}+x^{0}\right)}{\left(x^{1}+3\right)^{2}}
x^{4}+3x^{3}+1 санын x^{0} санына көбейтіңіз.
\frac{4x^{1+3}+9x^{1+2}+3\times 4x^{3}+3\times 9x^{2}-\left(x^{4}+3x^{3}+x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Негіздері бір дәреже көрсеткіштерін көбейту үшін, олардың дәрежелерін қосыңыз.
\frac{4x^{4}+9x^{3}+12x^{3}+27x^{2}-\left(x^{4}+3x^{3}+x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Қысқартыңыз.
\frac{3x^{4}+6x^{3}+12x^{3}+27x^{2}-x^{0}}{\left(x^{1}+3\right)^{2}}
Ұқсас мүшелерді біріктіріңіз.
\frac{3x^{4}+6x^{3}+12x^{3}+27x^{2}-x^{0}}{\left(x+3\right)^{2}}
Кез келген t, t^{1}=t мүшесі үшін.
\frac{3x^{4}+6x^{3}+12x^{3}+27x^{2}-1}{\left(x+3\right)^{2}}
0, t^{0}=1 мәнінен басқа кез келген t мүшесі үшін.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}