Негізгі мазмұнды өткізіп жіберу
x мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

a+b=-7 ab=10
Теңдеуді шешу үшін x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) формуласын қолданып, x^{2}-7x+10 мәнін көбейткіштерге жіктеңіз. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
-1,-10 -2,-5
ab оң болғандықтан, a және b белгілері бірдей болады. a+b теріс болғандықтан, a және b мәндері теріс болады. Көбейтіндісі 10 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
-1-10=-11 -2-5=-7
Әр жұптың қосындысын есептеңіз.
a=-5 b=-2
Шешім — бұл -7 қосындысын беретін жұп.
\left(x-5\right)\left(x-2\right)
Алынған мәндерді пайдаланып, көбейткішке жіктелген \left(x+a\right)\left(x+b\right) өрнегін қайта жазыңыз.
x=5 x=2
Теңдеулердің шешімін табу үшін, x-5=0 және x-2=0 теңдіктерін шешіңіз.
a+b=-7 ab=1\times 10=10
Теңдеуді шешу үшін, сол жағын топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, сол жағы x^{2}+ax+bx+10 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
-1,-10 -2,-5
ab оң болғандықтан, a және b белгілері бірдей болады. a+b теріс болғандықтан, a және b мәндері теріс болады. Көбейтіндісі 10 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
-1-10=-11 -2-5=-7
Әр жұптың қосындысын есептеңіз.
a=-5 b=-2
Шешім — бұл -7 қосындысын беретін жұп.
\left(x^{2}-5x\right)+\left(-2x+10\right)
x^{2}-7x+10 мәнін \left(x^{2}-5x\right)+\left(-2x+10\right) ретінде қайта жазыңыз.
x\left(x-5\right)-2\left(x-5\right)
Бірінші топтағы x ортақ көбейткішін және екінші топтағы -2 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(x-5\right)\left(x-2\right)
Үлестіру сипаты арқылы x-5 ортақ көбейткішін жақша сыртына шығарыңыз.
x=5 x=2
Теңдеулердің шешімін табу үшін, x-5=0 және x-2=0 теңдіктерін шешіңіз.
x^{2}-7x+10=0
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 10}}{2}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 1 санын a мәніне, -7 санын b мәніне және 10 санын c мәніне ауыстырыңыз.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 10}}{2}
-7 санының квадратын шығарыңыз.
x=\frac{-\left(-7\right)±\sqrt{49-40}}{2}
-4 санын 10 санына көбейтіңіз.
x=\frac{-\left(-7\right)±\sqrt{9}}{2}
49 санын -40 санына қосу.
x=\frac{-\left(-7\right)±3}{2}
9 санының квадраттық түбірін шығарыңыз.
x=\frac{7±3}{2}
-7 санына қарама-қарсы сан 7 мәніне тең.
x=\frac{10}{2}
Енді ± плюс болған кездегі x=\frac{7±3}{2} теңдеуін шешіңіз. 7 санын 3 санына қосу.
x=5
10 санын 2 санына бөліңіз.
x=\frac{4}{2}
Енді ± минус болған кездегі x=\frac{7±3}{2} теңдеуін шешіңіз. 3 мәнінен 7 мәнін алу.
x=2
4 санын 2 санына бөліңіз.
x=5 x=2
Теңдеу енді шешілді.
x^{2}-7x+10=0
Осыған ұқсас квадрат теңдеулерді толық квадратқа дейін толтыру арқылы шешуге болады. Толық квадратқа дейін толтыру үшін, теңдеуді алдымен x^{2}+bx=c формуласына қою қажет.
x^{2}-7x+10-10=-10
Теңдеудің екі жағынан 10 санын алып тастаңыз.
x^{2}-7x=-10
10 санынан осы санның өзін алып тастаған кезде 0 қалады.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-10+\left(-\frac{7}{2}\right)^{2}
x бос мүшесінің коэффициенті болып табылатын -7 санын 2 мәніне бөлсеңіз, -\frac{7}{2} саны шығады. Содан соң, теңдеудің екі жағына -\frac{7}{2} квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}-7x+\frac{49}{4}=-10+\frac{49}{4}
Бөлшектің алымы мен бөлімінің квадратын шығару арқылы -\frac{7}{2} бөлшегінің квадратын табыңыз.
x^{2}-7x+\frac{49}{4}=\frac{9}{4}
-10 санын \frac{49}{4} санына қосу.
\left(x-\frac{7}{2}\right)^{2}=\frac{9}{4}
x^{2}-7x+\frac{49}{4} формуласын көбейткіштерге жіктеңіз. Жалпы, x^{2}+bx+c мәні толық квадрат болғанда, оны әрқашан \left(x+\frac{b}{2}\right)^{2} ретінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x-\frac{7}{2}=\frac{3}{2} x-\frac{7}{2}=-\frac{3}{2}
Қысқартыңыз.
x=5 x=2
Теңдеудің екі жағына да \frac{7}{2} санын қосыңыз.