Негізгі мазмұнды өткізіп жіберу
Көбейткіштерге жіктеу
Tick mark Image
Есептеу
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

a+b=-6 ab=1\times 8=8
Өрнекті топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, өрнек x^{2}+ax+bx+8 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
-1,-8 -2,-4
ab оң болғандықтан, a және b белгілері бірдей болады. a+b теріс болғандықтан, a және b мәндері теріс болады. Көбейтіндісі 8 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
-1-8=-9 -2-4=-6
Әр жұптың қосындысын есептеңіз.
a=-4 b=-2
Шешім — бұл -6 қосындысын беретін жұп.
\left(x^{2}-4x\right)+\left(-2x+8\right)
x^{2}-6x+8 мәнін \left(x^{2}-4x\right)+\left(-2x+8\right) ретінде қайта жазыңыз.
x\left(x-4\right)-2\left(x-4\right)
Бірінші топтағы x ортақ көбейткішін және екінші топтағы -2 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(x-4\right)\left(x-2\right)
Үлестіру сипаты арқылы x-4 ортақ көбейткішін жақша сыртына шығарыңыз.
x^{2}-6x+8=0
Квадраттық көпмүшені мына түрлендіру арқылы көбейткіштерге жіктеуге болады: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), мұнда x_{1} және x_{2} — ax^{2}+bx+c=0 квадрат теңдеуінің шешімдері.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 8}}{2}
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 8}}{2}
-6 санының квадратын шығарыңыз.
x=\frac{-\left(-6\right)±\sqrt{36-32}}{2}
-4 санын 8 санына көбейтіңіз.
x=\frac{-\left(-6\right)±\sqrt{4}}{2}
36 санын -32 санына қосу.
x=\frac{-\left(-6\right)±2}{2}
4 санының квадраттық түбірін шығарыңыз.
x=\frac{6±2}{2}
-6 санына қарама-қарсы сан 6 мәніне тең.
x=\frac{8}{2}
Енді ± плюс болған кездегі x=\frac{6±2}{2} теңдеуін шешіңіз. 6 санын 2 санына қосу.
x=4
8 санын 2 санына бөліңіз.
x=\frac{4}{2}
Енді ± минус болған кездегі x=\frac{6±2}{2} теңдеуін шешіңіз. 2 мәнінен 6 мәнін алу.
x=2
4 санын 2 санына бөліңіз.
x^{2}-6x+8=\left(x-4\right)\left(x-2\right)
Бастапқы өрнекті мына формула бойынша көбейткіштерге жіктеңіз: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). x_{1} мәнінің орнына 4 санын, ал x_{2} мәнінің орнына 2 санын қойыңыз.