Негізгі мазмұнды өткізіп жіберу
x мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

x^{2}-2x-4=0
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-4\right)}}{2}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 1 санын a мәніне, -2 санын b мәніне және -4 санын c мәніне ауыстырыңыз.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-4\right)}}{2}
-2 санының квадратын шығарыңыз.
x=\frac{-\left(-2\right)±\sqrt{4+16}}{2}
-4 санын -4 санына көбейтіңіз.
x=\frac{-\left(-2\right)±\sqrt{20}}{2}
4 санын 16 санына қосу.
x=\frac{-\left(-2\right)±2\sqrt{5}}{2}
20 санының квадраттық түбірін шығарыңыз.
x=\frac{2±2\sqrt{5}}{2}
-2 санына қарама-қарсы сан 2 мәніне тең.
x=\frac{2\sqrt{5}+2}{2}
Енді ± плюс болған кездегі x=\frac{2±2\sqrt{5}}{2} теңдеуін шешіңіз. 2 санын 2\sqrt{5} санына қосу.
x=\sqrt{5}+1
2+2\sqrt{5} санын 2 санына бөліңіз.
x=\frac{2-2\sqrt{5}}{2}
Енді ± минус болған кездегі x=\frac{2±2\sqrt{5}}{2} теңдеуін шешіңіз. 2\sqrt{5} мәнінен 2 мәнін алу.
x=1-\sqrt{5}
2-2\sqrt{5} санын 2 санына бөліңіз.
x=\sqrt{5}+1 x=1-\sqrt{5}
Теңдеу енді шешілді.
x^{2}-2x-4=0
Осыған ұқсас квадрат теңдеулерді толық квадратқа дейін толтыру арқылы шешуге болады. Толық квадратқа дейін толтыру үшін, теңдеуді алдымен x^{2}+bx=c формуласына қою қажет.
x^{2}-2x-4-\left(-4\right)=-\left(-4\right)
Теңдеудің екі жағына да 4 санын қосыңыз.
x^{2}-2x=-\left(-4\right)
-4 санынан осы санның өзін алып тастаған кезде 0 қалады.
x^{2}-2x=4
-4 мәнінен 0 мәнін алу.
x^{2}-2x+1=4+1
x бос мүшесінің коэффициенті болып табылатын -2 санын 2 мәніне бөлсеңіз, -1 саны шығады. Содан соң, теңдеудің екі жағына -1 квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}-2x+1=5
4 санын 1 санына қосу.
\left(x-1\right)^{2}=5
x^{2}-2x+1 көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x-1\right)^{2}}=\sqrt{5}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x-1=\sqrt{5} x-1=-\sqrt{5}
Қысқартыңыз.
x=\sqrt{5}+1 x=1-\sqrt{5}
Теңдеудің екі жағына да 1 санын қосыңыз.