x мәнін табыңыз
x=-\frac{2}{3}\approx -0.666666667
x=1
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
3x^{2}-x-2=0
x^{2} және 2x^{2} мәндерін қоссаңыз, 3x^{2} мәні шығады.
a+b=-1 ab=3\left(-2\right)=-6
Теңдеуді шешу үшін, сол жағын топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, сол жағы 3x^{2}+ax+bx-2 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
1,-6 2,-3
ab теріс болғандықтан, a және b белгілері теріс болады. a+b мәні теріс болғандықтан, теріс санның абсолютті мәні оң санға қарағанда үлкенірек болады. Көбейтіндісі -6 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
1-6=-5 2-3=-1
Әр жұптың қосындысын есептеңіз.
a=-3 b=2
Шешім — бұл -1 қосындысын беретін жұп.
\left(3x^{2}-3x\right)+\left(2x-2\right)
3x^{2}-x-2 мәнін \left(3x^{2}-3x\right)+\left(2x-2\right) ретінде қайта жазыңыз.
3x\left(x-1\right)+2\left(x-1\right)
Бірінші топтағы 3x ортақ көбейткішін және екінші топтағы 2 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(x-1\right)\left(3x+2\right)
Үлестіру сипаты арқылы x-1 ортақ көбейткішін жақша сыртына шығарыңыз.
x=1 x=-\frac{2}{3}
Теңдеулердің шешімін табу үшін, x-1=0 және 3x+2=0 теңдіктерін шешіңіз.
3x^{2}-x-2=0
x^{2} және 2x^{2} мәндерін қоссаңыз, 3x^{2} мәні шығады.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 3\left(-2\right)}}{2\times 3}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 3 санын a мәніне, -1 санын b мәніне және -2 санын c мәніне ауыстырыңыз.
x=\frac{-\left(-1\right)±\sqrt{1-12\left(-2\right)}}{2\times 3}
-4 санын 3 санына көбейтіңіз.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\times 3}
-12 санын -2 санына көбейтіңіз.
x=\frac{-\left(-1\right)±\sqrt{25}}{2\times 3}
1 санын 24 санына қосу.
x=\frac{-\left(-1\right)±5}{2\times 3}
25 санының квадраттық түбірін шығарыңыз.
x=\frac{1±5}{2\times 3}
-1 санына қарама-қарсы сан 1 мәніне тең.
x=\frac{1±5}{6}
2 санын 3 санына көбейтіңіз.
x=\frac{6}{6}
Енді ± плюс болған кездегі x=\frac{1±5}{6} теңдеуін шешіңіз. 1 санын 5 санына қосу.
x=1
6 санын 6 санына бөліңіз.
x=-\frac{4}{6}
Енді ± минус болған кездегі x=\frac{1±5}{6} теңдеуін шешіңіз. 5 мәнінен 1 мәнін алу.
x=-\frac{2}{3}
2 мәнін шегеру және алу арқылы \frac{-4}{6} үлесін ең аз мәнге азайтыңыз.
x=1 x=-\frac{2}{3}
Теңдеу енді шешілді.
3x^{2}-x-2=0
x^{2} және 2x^{2} мәндерін қоссаңыз, 3x^{2} мәні шығады.
3x^{2}-x=2
Екі жағына 2 қосу. Кез келген сан мен нөлдің қосындысы сол санның өзіне тең болады.
\frac{3x^{2}-x}{3}=\frac{2}{3}
Екі жағын да 3 санына бөліңіз.
x^{2}-\frac{1}{3}x=\frac{2}{3}
3 санына бөлген кезде 3 санына көбейту әрекетінің күшін жояды.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{2}{3}+\left(-\frac{1}{6}\right)^{2}
x бос мүшесінің коэффициенті болып табылатын -\frac{1}{3} санын 2 мәніне бөлсеңіз, -\frac{1}{6} саны шығады. Содан соң, теңдеудің екі жағына -\frac{1}{6} квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{2}{3}+\frac{1}{36}
Бөлшектің алымы мен бөлімінің квадратын шығару арқылы -\frac{1}{6} бөлшегінің квадратын табыңыз.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{25}{36}
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы \frac{2}{3} бөлшегіне \frac{1}{36} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
\left(x-\frac{1}{6}\right)^{2}=\frac{25}{36}
x^{2}-\frac{1}{3}x+\frac{1}{36} көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x-\frac{1}{6}=\frac{5}{6} x-\frac{1}{6}=-\frac{5}{6}
Қысқартыңыз.
x=1 x=-\frac{2}{3}
Теңдеудің екі жағына да \frac{1}{6} санын қосыңыз.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}