Негізгі мазмұнды өткізіп жіберу
x мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

x^{2}+2x+1=0
Екі жағына 1 қосу.
a+b=2 ab=1
Теңдеуді шешу үшін x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) формуласын қолданып, x^{2}+2x+1 мәнін көбейткіштерге жіктеңіз. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
a=1 b=1
ab оң болғандықтан, a және b белгілері бірдей болады. a+b оң болғандықтан, a және b мәндері оң болады. Мұндай жалғыз жұп — бұл жүйе шешімі.
\left(x+1\right)\left(x+1\right)
Алынған мәндерді пайдаланып, көбейткішке жіктелген \left(x+a\right)\left(x+b\right) өрнегін қайта жазыңыз.
\left(x+1\right)^{2}
Қос мүшелі шаршы ретінде қайта белгілеңіз.
x=-1
Теңдеудің шешімін табу үшін, x+1=0 теңдігін шешіңіз.
x^{2}+2x+1=0
Екі жағына 1 қосу.
a+b=2 ab=1\times 1=1
Теңдеуді шешу үшін, сол жағын топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, сол жағы x^{2}+ax+bx+1 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
a=1 b=1
ab оң болғандықтан, a және b белгілері бірдей болады. a+b оң болғандықтан, a және b мәндері оң болады. Мұндай жалғыз жұп — бұл жүйе шешімі.
\left(x^{2}+x\right)+\left(x+1\right)
x^{2}+2x+1 мәнін \left(x^{2}+x\right)+\left(x+1\right) ретінде қайта жазыңыз.
x\left(x+1\right)+x+1
x^{2}+x өрнегіндегі x ортақ көбейткішін жақша сыртына шығарыңыз.
\left(x+1\right)\left(x+1\right)
Үлестіру сипаты арқылы x+1 ортақ көбейткішін жақша сыртына шығарыңыз.
\left(x+1\right)^{2}
Қос мүшелі шаршы ретінде қайта белгілеңіз.
x=-1
Теңдеудің шешімін табу үшін, x+1=0 теңдігін шешіңіз.
x^{2}+2x=-1
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x^{2}+2x-\left(-1\right)=-1-\left(-1\right)
Теңдеудің екі жағына да 1 санын қосыңыз.
x^{2}+2x-\left(-1\right)=0
-1 санынан осы санның өзін алып тастаған кезде 0 қалады.
x^{2}+2x+1=0
-1 мәнінен 0 мәнін алу.
x=\frac{-2±\sqrt{2^{2}-4}}{2}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 1 санын a мәніне, 2 санын b мәніне және 1 санын c мәніне ауыстырыңыз.
x=\frac{-2±\sqrt{4-4}}{2}
2 санының квадратын шығарыңыз.
x=\frac{-2±\sqrt{0}}{2}
4 санын -4 санына қосу.
x=-\frac{2}{2}
0 санының квадраттық түбірін шығарыңыз.
x=-1
-2 санын 2 санына бөліңіз.
x^{2}+2x=-1
Осыған ұқсас квадрат теңдеулерді толық квадратқа дейін толтыру арқылы шешуге болады. Толық квадратқа дейін толтыру үшін, теңдеуді алдымен x^{2}+bx=c формуласына қою қажет.
x^{2}+2x+1^{2}=-1+1^{2}
x бос мүшесінің коэффициенті болып табылатын 2 санын 2 мәніне бөлсеңіз, 1 саны шығады. Содан соң, теңдеудің екі жағына 1 квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}+2x+1=-1+1
1 санының квадратын шығарыңыз.
x^{2}+2x+1=0
-1 санын 1 санына қосу.
\left(x+1\right)^{2}=0
x^{2}+2x+1 көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x+1\right)^{2}}=\sqrt{0}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x+1=0 x+1=0
Қысқартыңыз.
x=-1 x=-1
Теңдеудің екі жағынан 1 санын алып тастаңыз.
x=-1
Теңдеу енді шешілді. Шешімдері бірдей.