x мәнін табыңыз
x = \frac{3 \sqrt{41} - 15}{2} \approx 2.104686356
x=\frac{-3\sqrt{41}-15}{2}\approx -17.104686356
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
x^{2}+15x-36=0
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-15±\sqrt{15^{2}-4\left(-36\right)}}{2}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 1 санын a мәніне, 15 санын b мәніне және -36 санын c мәніне ауыстырыңыз.
x=\frac{-15±\sqrt{225-4\left(-36\right)}}{2}
15 санының квадратын шығарыңыз.
x=\frac{-15±\sqrt{225+144}}{2}
-4 санын -36 санына көбейтіңіз.
x=\frac{-15±\sqrt{369}}{2}
225 санын 144 санына қосу.
x=\frac{-15±3\sqrt{41}}{2}
369 санының квадраттық түбірін шығарыңыз.
x=\frac{3\sqrt{41}-15}{2}
Енді ± плюс болған кездегі x=\frac{-15±3\sqrt{41}}{2} теңдеуін шешіңіз. -15 санын 3\sqrt{41} санына қосу.
x=\frac{-3\sqrt{41}-15}{2}
Енді ± минус болған кездегі x=\frac{-15±3\sqrt{41}}{2} теңдеуін шешіңіз. 3\sqrt{41} мәнінен -15 мәнін алу.
x=\frac{3\sqrt{41}-15}{2} x=\frac{-3\sqrt{41}-15}{2}
Теңдеу енді шешілді.
x^{2}+15x-36=0
Осыған ұқсас квадрат теңдеулерді толық квадратқа дейін толтыру арқылы шешуге болады. Толық квадратқа дейін толтыру үшін, теңдеуді алдымен x^{2}+bx=c формуласына қою қажет.
x^{2}+15x-36-\left(-36\right)=-\left(-36\right)
Теңдеудің екі жағына да 36 санын қосыңыз.
x^{2}+15x=-\left(-36\right)
-36 санынан осы санның өзін алып тастаған кезде 0 қалады.
x^{2}+15x=36
-36 мәнінен 0 мәнін алу.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=36+\left(\frac{15}{2}\right)^{2}
x бос мүшесінің коэффициенті болып табылатын 15 санын 2 мәніне бөлсеңіз, \frac{15}{2} саны шығады. Содан соң, теңдеудің екі жағына \frac{15}{2} квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}+15x+\frac{225}{4}=36+\frac{225}{4}
Бөлшектің алымы мен бөлімінің квадратын шығару арқылы \frac{15}{2} бөлшегінің квадратын табыңыз.
x^{2}+15x+\frac{225}{4}=\frac{369}{4}
36 санын \frac{225}{4} санына қосу.
\left(x+\frac{15}{2}\right)^{2}=\frac{369}{4}
x^{2}+15x+\frac{225}{4} көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{369}{4}}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x+\frac{15}{2}=\frac{3\sqrt{41}}{2} x+\frac{15}{2}=-\frac{3\sqrt{41}}{2}
Қысқартыңыз.
x=\frac{3\sqrt{41}-15}{2} x=\frac{-3\sqrt{41}-15}{2}
Теңдеудің екі жағынан \frac{15}{2} санын алып тастаңыз.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}