Негізгі мазмұнды өткізіп жіберу
Көбейткіштерге жіктеу
Tick mark Image
Есептеу
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

a+b=11 ab=1\times 30=30
Өрнекті топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, өрнек x^{2}+ax+bx+30 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
1,30 2,15 3,10 5,6
ab оң болғандықтан, a және b белгілері бірдей болады. a+b оң болғандықтан, a және b мәндері оң болады. Көбейтіндісі 30 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
1+30=31 2+15=17 3+10=13 5+6=11
Әр жұптың қосындысын есептеңіз.
a=5 b=6
Шешім — бұл 11 қосындысын беретін жұп.
\left(x^{2}+5x\right)+\left(6x+30\right)
x^{2}+11x+30 мәнін \left(x^{2}+5x\right)+\left(6x+30\right) ретінде қайта жазыңыз.
x\left(x+5\right)+6\left(x+5\right)
Бірінші топтағы x ортақ көбейткішін және екінші топтағы 6 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(x+5\right)\left(x+6\right)
Үлестіру сипаты арқылы x+5 ортақ көбейткішін жақша сыртына шығарыңыз.
x^{2}+11x+30=0
Квадраттық көпмүшені мына түрлендіру арқылы көбейткіштерге жіктеуге болады: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), мұнда x_{1} және x_{2} — ax^{2}+bx+c=0 квадрат теңдеуінің шешімдері.
x=\frac{-11±\sqrt{11^{2}-4\times 30}}{2}
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-11±\sqrt{121-4\times 30}}{2}
11 санының квадратын шығарыңыз.
x=\frac{-11±\sqrt{121-120}}{2}
-4 санын 30 санына көбейтіңіз.
x=\frac{-11±\sqrt{1}}{2}
121 санын -120 санына қосу.
x=\frac{-11±1}{2}
1 санының квадраттық түбірін шығарыңыз.
x=-\frac{10}{2}
Енді ± плюс болған кездегі x=\frac{-11±1}{2} теңдеуін шешіңіз. -11 санын 1 санына қосу.
x=-5
-10 санын 2 санына бөліңіз.
x=-\frac{12}{2}
Енді ± минус болған кездегі x=\frac{-11±1}{2} теңдеуін шешіңіз. 1 мәнінен -11 мәнін алу.
x=-6
-12 санын 2 санына бөліңіз.
x^{2}+11x+30=\left(x-\left(-5\right)\right)\left(x-\left(-6\right)\right)
Бастапқы өрнекті мына формула бойынша көбейткіштерге жіктеңіз: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). x_{1} мәнінің орнына -5 санын, ал x_{2} мәнінің орнына -6 санын қойыңыз.
x^{2}+11x+30=\left(x+5\right)\left(x+6\right)
p-\left(-q\right) түріндегі өрнектердің барлығын келесідей ықшамдаңыз: p+q.