Негізгі мазмұнды өткізіп жіберу
Көбейткіштерге жіктеу
Tick mark Image
Есептеу
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

-x^{2}-3x+1=0
Квадраттық көпмүшені мына түрлендіру арқылы көбейткіштерге жіктеуге болады: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), мұнда x_{1} және x_{2} — ax^{2}+bx+c=0 квадрат теңдеуінің шешімдері.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)}}{2\left(-1\right)}
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)}}{2\left(-1\right)}
-3 санының квадратын шығарыңыз.
x=\frac{-\left(-3\right)±\sqrt{9+4}}{2\left(-1\right)}
-4 санын -1 санына көбейтіңіз.
x=\frac{-\left(-3\right)±\sqrt{13}}{2\left(-1\right)}
9 санын 4 санына қосу.
x=\frac{3±\sqrt{13}}{2\left(-1\right)}
-3 санына қарама-қарсы сан 3 мәніне тең.
x=\frac{3±\sqrt{13}}{-2}
2 санын -1 санына көбейтіңіз.
x=\frac{\sqrt{13}+3}{-2}
Енді ± плюс болған кездегі x=\frac{3±\sqrt{13}}{-2} теңдеуін шешіңіз. 3 санын \sqrt{13} санына қосу.
x=\frac{-\sqrt{13}-3}{2}
3+\sqrt{13} санын -2 санына бөліңіз.
x=\frac{3-\sqrt{13}}{-2}
Енді ± минус болған кездегі x=\frac{3±\sqrt{13}}{-2} теңдеуін шешіңіз. \sqrt{13} мәнінен 3 мәнін алу.
x=\frac{\sqrt{13}-3}{2}
3-\sqrt{13} санын -2 санына бөліңіз.
-x^{2}-3x+1=-\left(x-\frac{-\sqrt{13}-3}{2}\right)\left(x-\frac{\sqrt{13}-3}{2}\right)
Бастапқы өрнекті мына формула бойынша көбейткіштерге жіктеңіз: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). x_{1} мәнінің орнына \frac{-3-\sqrt{13}}{2} санын, ал x_{2} мәнінің орнына \frac{-3+\sqrt{13}}{2} санын қойыңыз.