N мәнін табыңыз
N=\frac{a_{n}-6S_{40}}{5}
S_40 мәнін табыңыз
S_{40}=\frac{a_{n}-5N}{6}
Ортақ пайдалану
Алмасу буферіне көшірілген
5N+6S_{40}=a_{n}
Теңдеу жақтарын барлық белгісіз мүшелері сол жағында болатындай етіп ауыстырыңыз.
5N=a_{n}-6S_{40}
Екі жағынан да 6S_{40} мәнін қысқартыңыз.
\frac{5N}{5}=\frac{a_{n}-6S_{40}}{5}
Екі жағын да 5 санына бөліңіз.
N=\frac{a_{n}-6S_{40}}{5}
5 санына бөлген кезде 5 санына көбейту әрекетінің күшін жояды.
5N+6S_{40}=a_{n}
Теңдеу жақтарын барлық белгісіз мүшелері сол жағында болатындай етіп ауыстырыңыз.
6S_{40}=a_{n}-5N
Екі жағынан да 5N мәнін қысқартыңыз.
\frac{6S_{40}}{6}=\frac{a_{n}-5N}{6}
Екі жағын да 6 санына бөліңіз.
S_{40}=\frac{a_{n}-5N}{6}
6 санына бөлген кезде 6 санына көбейту әрекетінің күшін жояды.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}