Негізгі мазмұнды өткізіп жіберу
Көбейткіштерге жіктеу
Tick mark Image
Есептеу
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

a+b=-5 ab=2\left(-3\right)=-6
Өрнекті топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, өрнек 2x^{2}+ax+bx-3 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
1,-6 2,-3
ab теріс болғандықтан, a және b белгілері теріс болады. a+b мәні теріс болғандықтан, теріс санның абсолютті мәні оң санға қарағанда үлкенірек болады. Көбейтіндісі -6 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
1-6=-5 2-3=-1
Әр жұптың қосындысын есептеңіз.
a=-6 b=1
Шешім — бұл -5 қосындысын беретін жұп.
\left(2x^{2}-6x\right)+\left(x-3\right)
2x^{2}-5x-3 мәнін \left(2x^{2}-6x\right)+\left(x-3\right) ретінде қайта жазыңыз.
2x\left(x-3\right)+x-3
2x^{2}-6x өрнегіндегі 2x ортақ көбейткішін жақша сыртына шығарыңыз.
\left(x-3\right)\left(2x+1\right)
Үлестіру сипаты арқылы x-3 ортақ көбейткішін жақша сыртына шығарыңыз.
2x^{2}-5x-3=0
Квадраттық көпмүшені мына түрлендіру арқылы көбейткіштерге жіктеуге болады: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), мұнда x_{1} және x_{2} — ax^{2}+bx+c=0 квадрат теңдеуінің шешімдері.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
-5 санының квадратын шығарыңыз.
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-3\right)}}{2\times 2}
-4 санын 2 санына көбейтіңіз.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 2}
-8 санын -3 санына көбейтіңіз.
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 2}
25 санын 24 санына қосу.
x=\frac{-\left(-5\right)±7}{2\times 2}
49 санының квадраттық түбірін шығарыңыз.
x=\frac{5±7}{2\times 2}
-5 санына қарама-қарсы сан 5 мәніне тең.
x=\frac{5±7}{4}
2 санын 2 санына көбейтіңіз.
x=\frac{12}{4}
Енді ± плюс болған кездегі x=\frac{5±7}{4} теңдеуін шешіңіз. 5 санын 7 санына қосу.
x=3
12 санын 4 санына бөліңіз.
x=-\frac{2}{4}
Енді ± минус болған кездегі x=\frac{5±7}{4} теңдеуін шешіңіз. 7 мәнінен 5 мәнін алу.
x=-\frac{1}{2}
2 мәнін шегеру және алу арқылы \frac{-2}{4} үлесін ең аз мәнге азайтыңыз.
2x^{2}-5x-3=2\left(x-3\right)\left(x-\left(-\frac{1}{2}\right)\right)
Бастапқы өрнекті мына формула бойынша көбейткіштерге жіктеңіз: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). x_{1} мәнінің орнына 3 санын, ал x_{2} мәнінің орнына -\frac{1}{2} санын қойыңыз.
2x^{2}-5x-3=2\left(x-3\right)\left(x+\frac{1}{2}\right)
p-\left(-q\right) түріндегі өрнектердің барлығын келесідей ықшамдаңыз: p+q.
2x^{2}-5x-3=2\left(x-3\right)\times \frac{2x+1}{2}
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы \frac{1}{2} бөлшегіне x бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
2x^{2}-5x-3=\left(x-3\right)\left(2x+1\right)
2 және 2 ішіндегі ең үлкен 2 бөлгішті қысқартыңыз.