Негізгі мазмұнды өткізіп жіберу
x мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

x\left(9x+6\right)=0
x ортақ көбейткішін жақшаның сыртына шығарыңыз.
x=0 x=-\frac{2}{3}
Теңдеулердің шешімін табу үшін, x=0 және 9x+6=0 теңдіктерін шешіңіз.
9x^{2}+6x=0
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-6±\sqrt{6^{2}}}{2\times 9}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 9 санын a мәніне, 6 санын b мәніне және 0 санын c мәніне ауыстырыңыз.
x=\frac{-6±6}{2\times 9}
6^{2} санының квадраттық түбірін шығарыңыз.
x=\frac{-6±6}{18}
2 санын 9 санына көбейтіңіз.
x=\frac{0}{18}
Енді ± плюс болған кездегі x=\frac{-6±6}{18} теңдеуін шешіңіз. -6 санын 6 санына қосу.
x=0
0 санын 18 санына бөліңіз.
x=-\frac{12}{18}
Енді ± минус болған кездегі x=\frac{-6±6}{18} теңдеуін шешіңіз. 6 мәнінен -6 мәнін алу.
x=-\frac{2}{3}
6 мәнін шегеру және алу арқылы \frac{-12}{18} үлесін ең аз мәнге азайтыңыз.
x=0 x=-\frac{2}{3}
Теңдеу енді шешілді.
9x^{2}+6x=0
Осыған ұқсас квадрат теңдеулерді толық квадратқа дейін толтыру арқылы шешуге болады. Толық квадратқа дейін толтыру үшін, теңдеуді алдымен x^{2}+bx=c формуласына қою қажет.
\frac{9x^{2}+6x}{9}=\frac{0}{9}
Екі жағын да 9 санына бөліңіз.
x^{2}+\frac{6}{9}x=\frac{0}{9}
9 санына бөлген кезде 9 санына көбейту әрекетінің күшін жояды.
x^{2}+\frac{2}{3}x=\frac{0}{9}
3 мәнін шегеру және алу арқылы \frac{6}{9} үлесін ең аз мәнге азайтыңыз.
x^{2}+\frac{2}{3}x=0
0 санын 9 санына бөліңіз.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\left(\frac{1}{3}\right)^{2}
x бос мүшесінің коэффициенті болып табылатын \frac{2}{3} санын 2 мәніне бөлсеңіз, \frac{1}{3} саны шығады. Содан соң, теңдеудің екі жағына \frac{1}{3} квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{1}{9}
Бөлшектің алымы мен бөлімінің квадратын шығару арқылы \frac{1}{3} бөлшегінің квадратын табыңыз.
\left(x+\frac{1}{3}\right)^{2}=\frac{1}{9}
x^{2}+\frac{2}{3}x+\frac{1}{9} көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x+\frac{1}{3}=\frac{1}{3} x+\frac{1}{3}=-\frac{1}{3}
Қысқартыңыз.
x=0 x=-\frac{2}{3}
Теңдеудің екі жағынан \frac{1}{3} санын алып тастаңыз.