Негізгі мазмұнды өткізіп жіберу
x мәнін табыңыз
Tick mark Image
x мәнін табыңыз (complex solution)
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

9^{3x-8}=6.561
Теңдеуді шешу үшін, дәрежелер мен логарифмдер ережелерін пайдаланыңыз.
\log(9^{3x-8})=\log(6.561)
Теңдеудің екі жағының логарифмін шығарыңыз.
\left(3x-8\right)\log(9)=\log(6.561)
Дәрежесі шығарылған санның логарифмі дәреже көрсеткішін санның логарифміне көбейткенге тең.
3x-8=\frac{\log(6.561)}{\log(9)}
Екі жағын да \log(9) санына бөліңіз.
3x-8=\log_{9}\left(6.561\right)
\frac{\log(a)}{\log(b)}=\log_{b}\left(a\right) негізін өзгерту формуласы арқылы.
3x=-\frac{3\log_{3}\left(10\right)}{2}+4-\left(-8\right)
Теңдеудің екі жағына да 8 санын қосыңыз.
x=\frac{-\frac{3\log_{3}\left(10\right)}{2}+12}{3}
Екі жағын да 3 санына бөліңіз.